Optimal switching control of a fed-batch fermentation process. (English) Zbl 1241.49022

Summary: Considering the hybrid nature in fed-batch culture of glycerol biconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae, we propose a state-based switching dynamical system to describe the fermentation process. To maximize the concentration of 1,3-PD at the terminal time, an optimal switching control model subject to our proposed switching system and constraints of continuous state inequality and control function is presented. Because the number of the switchings is not known a-priori, we reformulate the above optimal control problem as a two-level optimization problem. An optimization algorithm is developed to seek the optimal solution on the basis of a heuristic approach and control parametrization technique. Numerical results show that, by employing the obtained optimal control strategy, 1,3-PD concentration at the terminal time can be increased considerably.


49N90 Applications of optimal control and differential games
49M30 Other numerical methods in calculus of variations (MSC2010)
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
92C40 Biochemistry, molecular biology
Full Text: DOI


[1] McNeil B., Harvey L.M.: Fermentation, A Practical Approach. IRL Press, Tokyo (1990)
[2] Mészáros A., Bales V.: A contribution to optimal control of fed-batch biochemical processes. Bioproc. Eng. 7, 363–367 (1992)
[3] Oberle H.J., Sothmann B.: Numerical computation of optimal feed rates for a fed-batch fermentation model. J. Optim. Theor. Appl. 100, 1–13 (1999) · Zbl 0925.93744
[4] Shin H.S., Lim H.C.: Maximization of metabolite in fed-batch cultures sufficient conditions for singular arc and optimal feed rate profiles. Biochem. Eng. J. 37, 62–74 (2007)
[5] Sarkar D., Modak J.M.: Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Comput. Chem. Eng. 28, 789–798 (2004)
[6] Korytowski, A., Szymkat, M., Maurer, H., Vossen, G.: Optimal control of a fedbatch fermentation process: numerical methods, sufficient conditions and sensitivity analysis. In: Proceedings of the 47th IEEE CDC, Cancun, Mexico, pp, 1551–1556 (2008)
[7] Ashoori A., Moshiri B., Khaki-Sedigh A., Bakhtiari M.R.: Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. J. Process Control 19, 1162–1173 (2009) · Zbl 1211.93048
[8] Biebl H., Menzel K., Zeng A.P.: Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52, 289–297 (1999)
[9] Menzel K., Zeng A.P., Deckwer W.D.: High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol. 20, 82–86 (1997)
[10] Zeng A.P.: Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioproc. Eng. 14, 169–175 (1996)
[11] Xiu Z.L., Zeng A.P., An L.J.: Mathematical modelling of kinetics and research on multiplicity of glyceroll bioconversion to 1,3-propanediol. J. Dalian Univ. Technol. 4, 428–433 (2000)
[12] Zeng A.P., Rose A., Biebl H., Tag C., Guenzel B., Deckwer W.D.: Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44, 902–911 (1994)
[13] Seidman, T.I.: Switching systems: thermostats and periodicity. Math. Res. Report 83-07, UMBC, Baltimore (1983)
[14] Wang, L.Y., Beydoun, A., Cook, J., Sun, J., Kolmanovsky, I.: Optimal hybrid control with applications to automotive powertrain systems. In: Lecture Notes in Control and Information Sciences vol. 222, pp. 190–200. Springer, Berlin (1997) · Zbl 0875.93422
[15] Lenhart S.M., Seidman T.I., Yong J.M.: Optimal control of a bioreactor with modal switching. Math. Mod. Meth. Appl. S. 6, 933–949 (2001) · Zbl 1013.92049
[16] Seidman, T.I.: Optimal control for switching systems. In: Proceedings of 21st Annual Conference on Inf. Sci. and Syst., Baltimore, MD, USA, pp. 485–489 (1987)
[17] Branicky M.S., Borkar V.S., Mitter S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Aut. Control 43(1), 31–45 (1998) · Zbl 0951.93002
[18] Xu, X.P., Antsaklis, P.J.: Results and perspectives on computational methods for optimal control of switched systems. In: Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2623, pp. 540–555. Springer, Berlin (2003) · Zbl 1038.49034
[19] Luus R., Chen Y.Q.: Optimal switching control via direct search optimization. Asian J. Contr. 6, 302–306 (2004)
[20] Xu X.P., Antsaklis P.J.: Optimal control of switched systems based on parametrization of the switching instants. IEEE Trans. Aut. Contr. 49, 2–16 (2004) · Zbl 1365.93308
[21] Teo K.L., Goh C.J., Wong K.H.: A Unified Computational Approach to Optimal Control Problems. Long Scientific Technical, Essex (1991) · Zbl 0747.49005
[22] Esposito W.R., Floudas C.A.: Deterministic global optimization in nonlinear optimal control problems. J. Glob. Optim. 17, 97–126 (2000) · Zbl 0980.49027
[23] Papamichail I., Adjiman C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33 (2002) · Zbl 1026.90071
[24] Pardalos P.M., Yatsenko V.: Optimzation and Control of Bilinear Systems. Springer-Verlag, New York (2009)
[25] Esposito W.R.: Dynamic programming: continuous-time optimal control. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, 2nd edn., pp. 844–846. Springer, (2008)
[26] Luus R.: Control vector iteration CVI. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization 2nd edn., pp. 509–513. Springer, (2008)
[27] Jennings L.S., Teo K.L., Goh C.J.: MISER3.3, Optimal control software:theory and user manual. Department of Mathematics, The University of Western Australia, Australia (2000)
[28] Teo K.L., Jennings L.S., Lee H.W.J., Rehbock V.: The control parameterization enhancing transform for constrained optimal control problems. J. Aust. Math. Soc. Series B 40, 314–335 (1999) · Zbl 0929.49014
[29] Li R., Teo K.L., Wong K.H., Duan G.R.: Control parametrization enhancing transform for optimal control of switched systems. Math. Comput. Modelling 43, 1393–1403 (2006) · Zbl 1139.49030
[30] Li R., Feng Z.G., Teo K.L., Duan G.R.: Optimal piecewise state feedback control for impulsive switched systems. Math. Comput. Modelling 48, 468–479 (2008) · Zbl 1145.93352
[31] Wu C.Z., Teo K.L.: Global impulsive optimal control computation. J. Ind. Manag. Optim. 2, 435–450 (2007) · Zbl 1112.49031
[32] Loxton R.C., Teo K.L, Rehbock V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44, 2923–2929 (2008) · Zbl 1160.49033
[33] Caccetta, L., van Loosen, I., Rehbock, V.: Effective algorithms for a class of discrete valued optimal control problems. In: Hichael, M.J., Commander, C.W., Pardalos, P.M., Murphey, R. (eds.) Optimization and Cooperative Control Strategies, Lecture Notes in Control and Information Science, vol. 381., pp. 1–30. Springer, (2009) · Zbl 1195.49041
[34] Farhadinia B., Teo K.L., Loxton R.C.: A computational method for a class of non-standard time optimal control problems involving multiple time horizons. Math. Comput. Modelling 49, 1682–1691 (2009) · Zbl 1165.49309
[35] Loxton R.C., Teo K.L., Rehbock V., Ling W.K.: Optimal switching instants for a switched capacitor DC/DC power converter. Automatica 45, 973–980 (2009) · Zbl 1162.49044
[36] Loxton R.C., Teo K.L., Rehbock V., Yiu K.F.C.: Optimal control problems with a continous inequality constraint on the state and the control. Automatica 45(10), 2250–2257 (2009) · Zbl 1179.49032
[37] Liu C.Y.: Optimal control for nonlinear dynamical system of microbial fed-batch culture. J. Comput. and Appl. Math. 232, 252–261 (2009) · Zbl 1171.49025
[38] Liu C.Y., Feng E.M., Yin H.C.: Optimal switching control for microbial fed-batch culture. Nonlinear Anal. Hybrid Syst. 2, 1168–1174 (2008) · Zbl 1163.93347
[39] Liu C.Y., Gong Z.H., Feng E.M., Yin H.C.: Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. J. Ind. Manag. Optim. 5(4), 835–850 (2009) · Zbl 1186.49024
[40] Bryson A., Ho Y.C.: Applied Optimal Control. Halsted Press, New York (1975)
[41] Chen X., Zhang D.J., Qi W.T., Gao S.J., Xiu Z.L., Xu P.: Microbial fed-batch production of 1,3- propanediol by Klebsiella pneumoniae under microaerobic conditions. Appl. Microbiol Biotechnol. 63, 143–146 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.