×

A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. (English) Zbl 1243.65144

Summary: This paper presents a new non-overlapping domain decomposition method for the Helmholtz equation, whose effective convergence is quasi-optimal. These improved properties result from a combination of an appropriate choice of transmission conditions and a suitable approximation of the Dirichlet to Neumann operator. A convergence theorem of the algorithm is established and numerical results validating the new approach are presented in both two and three dimensions.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Software:

GetDP; MUMPS; Gmsh
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Amestoy, P. R.; Duff, I. S.; Koster, J.; L’Excellent, J.-Y., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications, 23, 1, 15-41 (2001) · Zbl 0992.65018
[2] Antoine, X.; Barucq, H.; Bendali, A., Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape, Journal of Mathematical Analysis and Applications, 229, 184-211 (1999) · Zbl 0923.35179
[3] Antoine, X.; Darbas, M., Alternative integral equations for the iterative solution of acoustic scattering problems, Quarterly Journal of Mechanics and Applied Mathematics, 58, 1, 107-128 (2005) · Zbl 1064.76095
[4] Antoine, X.; Darbas, M., Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation, Mathematical Modelling and Numerical Analysis, 41, 1, 147-167 (2007) · Zbl 1123.65117
[5] X. Antoine, M. Darbas, Integral Equations and Iterative Schemes for Acoustic Scattering Problems, in press.; X. Antoine, M. Darbas, Integral Equations and Iterative Schemes for Acoustic Scattering Problems, in press. · Zbl 1064.76095
[6] Antoine, X.; Darbas, M.; Lu, Y. Y., An improved surface radiation condition for high-frequency acoustics scattering problems, Computer Methods in Applied Mechanics and Engineering, 195, 33-36, 4060-4074 (2006) · Zbl 1120.76058
[7] Antoine, X.; Geuzaine, C., Phase reduction models for improving the accuracy of the finite element solution of time-harmonic scattering problems I: General approach and low-order models, Journal of Computational Physics, 228, 8, 3114-3136 (2009) · Zbl 1161.65082
[8] Bayliss, A.; Gunzburger, M.; Turkel, E., Boundary conditions for the numerical solutions for elliptic equations in exterior regions, SIAM Journal of Applied Mathematics, 42, 430-451 (1982) · Zbl 0479.65056
[9] Bayliss, A.; Turkel, E., Radiation boundary-conditions for wave-like equations, Communications on Pure and Applied Mathematics, 33, 6, 707-725 (1980) · Zbl 0438.35043
[10] Bendali, A.; Boubendir, Y., Non-overlapping domain decomposition method for a nodal finite element method, Numerische Mathematik, 103, 4, 515-537 (2006) · Zbl 1099.65122
[11] Bendali, A.; Boubendir, Y.; Fares, M’B., A FETI-like domain decomposition method for coupling FEM and BEM in large-size problems of acoustic scattering, Computer & Structures, 85, 526-535 (2007)
[12] Bermudez, A.; Hervella-Nieto, L.; Prieto, A.; Rodriguez, R., An exact bounded perfectly matched layer for time-harmonic scattering problems, SIAM Journal of Scientific Computing, 30, 1, 312-338 (2007) · Zbl 1159.65356
[13] De La Bourdonnaye, A.; Farhat, C.; Macedo, A.; Magoulès, F.; Roux, F. X., A non overlapping domain decomposition method for the exterior Helmholtz problem, Contemporary Mathematics, 218, 2, 42-66 (1998) · Zbl 0909.65103
[14] Boubendir, Y., An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem, Journal of Computational and Applied Mathematics, 204, 2, 282-291 (2007) · Zbl 1117.65151
[15] Boubendir, Y.; Bendali, A.; Fares, M. B., Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method, International Journal for Numerical Methods in Engineering, 73, 1624-1650 (2008) · Zbl 1175.78026
[16] Collino, F.; Ghanemi, S.; Joly, P., Domain decomposition method for harmonic wave propagation: a general presentation, Computer Methods in Applied Mechanics and Engineering, 184, 171-211 (2000) · Zbl 0965.65134
[17] Collino, F.; Monk, P., The perfectly matched layer in curvilinear coordinates, SIAM Journal of Scientific Computing, 19, 6, 2061-2090 (1998) · Zbl 0940.78011
[18] B. Després, Méthodes de Décomposition de Domaine pour les Problèmes de Propagation d’Ondes en Régime Harmonique. Le Théorème de Borg pour l’Equation de Hill Vectorielle, PhD Thesis, Paris VI University, France, 1991.; B. Després, Méthodes de Décomposition de Domaine pour les Problèmes de Propagation d’Ondes en Régime Harmonique. Le Théorème de Borg pour l’Equation de Hill Vectorielle, PhD Thesis, Paris VI University, France, 1991. · Zbl 0849.65085
[19] Després, B., Domain Decomposition Method and the Helmholtz Problem, (Cohen, G.; Halpern, L.; Joly, P., Mathematical and numerical aspects of wave propagation phenomena (Strasbourg) (1991), SIAM: SIAM Philadelphia, PA), 44-52
[20] Després, B., Domain decomposition method and the helmholtz problem (part II), Mathematical and Numerical Aspects of Wave Propagation Phenomena (1993), SIAM: SIAM Philadelphia, PA · Zbl 0814.65113
[21] Dular, P.; Geuzaine, C.; Henrotte, F.; Legros, W., A general environment for the treatment of discrete problems and its application to the finite element method, IEEE Transactions on Magnetics, 34, 5, 3395-3398 (1998)
[22] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Mathematics of Computation, 23, 629-651 (1977) · Zbl 0367.65051
[23] Farhat, C.; Macedo, A.; Lesoinne, M., A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems, Numerische Mathematik, 85, 2, 282-303 (2000)
[24] Farhat, C.; Macedo, A.; Lesoinne, M.; Roux, F. X.; Magoulès, F.; De La Bourdonnaye, A., Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems, Computer Methods in Applied Mechanics and Engineering, 184, 213-239 (2000) · Zbl 0979.76046
[25] Farhat, C.; Tezaur, R.; Toivanen, J., A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers, International Journal for Numerical Methods in Engineering, 78, 1513-1531 (2009) · Zbl 1171.76417
[26] Gander, M. J.; Magoulès, F.; Nataf, F., Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM Journal of Scientific Computing, 24, 1, 38-60 (2002) · Zbl 1021.65061
[27] Geuzaine, C.; Remacle, J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[28] Guddati, M-N.; -W Lim, K., Continued fraction absorbing boundary conditions for convex polygonal domains, International Journal for Numerical Methods in Engineering, 66, 949977 (2006) · Zbl 1110.74850
[29] Ianculescu, C.; Thompson, L. L., Parallel iterative solution for the Helmholtz equation with exact non-reflecting boundary conditions, Computer Methods in Applied Mechanics and Engineering, 195, 29-32, 3709-3741 (2006) · Zbl 1120.76041
[30] Ihlenburg, F.; Babuska, I., Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, International Journal for Numerical Methods in Engineering, 38, 3745-3774 (1995) · Zbl 0851.73062
[31] Ihlenburg, F., Finite Element Analysis of Acoustic Scattering (1998), Springer-Verlag · Zbl 0908.65091
[32] Kerchroud, R.; Antoine, X.; Soulaimani, A., Numerical accuracy of a Padé-Type non-reflecting boundary condition for the finite element solution of acoustic scattering problems at high-frequency, International Journal for Numerical Methods in Engineering, 64, 10, 1275-1302 (2005) · Zbl 1113.76051
[33] Kerchroud, R.; Soulaimani, A.; Antoine, X., Performance study of plane wave finite element methods with a Padé-Type artificial boundary condition in acoustic scattering, Advances in Engineering Software, 40, 738-750 (2009) · Zbl 1165.76025
[34] P.-L. Lions. On the Schwarz Alternating Method III: A Variant for Non Overlapping Subdomains, in: T.F. Chan, R. Glowinski, J. Périaux, O. Widlund (Eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20-22 (1989), SIAM, Philadelphia, PA, 1990.; P.-L. Lions. On the Schwarz Alternating Method III: A Variant for Non Overlapping Subdomains, in: T.F. Chan, R. Glowinski, J. Périaux, O. Widlund (Eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20-22 (1989), SIAM, Philadelphia, PA, 1990. · Zbl 0704.65090
[35] Milinazzo, F. A.; Zala, C. A.; Brooke, G. H., Rational square-root approximations for parabolic equation algorithms, Journal of the Acoustical Society of America, 101, 2, 760-766 (1997)
[36] Quarteroni, A.; Valli, A., Domain Decomposition Methods for Partial Differential Equations (1999), Oxford University Press · Zbl 0931.65118
[37] F.X. Roux, F. Magoules, L. Series, Y. Boubendir, Approximation of optimal interface boundary conditions for two-Lagrange multiplier FETI method, Lecture Notes in Computational Science and Engineering, vol. 40, 2005, pp. 283-290.; F.X. Roux, F. Magoules, L. Series, Y. Boubendir, Approximation of optimal interface boundary conditions for two-Lagrange multiplier FETI method, Lecture Notes in Computational Science and Engineering, vol. 40, 2005, pp. 283-290. · Zbl 1066.65130
[38] F.-X. Roux, F. Magoulès, S. Salmon, L. Series, Optimization of interface operator based on algebraic approach, in: Domain Decomposition Methods in Science and Engineering, pp. 297-304, 2002.; F.-X. Roux, F. Magoulès, S. Salmon, L. Series, Optimization of interface operator based on algebraic approach, in: Domain Decomposition Methods in Science and Engineering, pp. 297-304, 2002.
[39] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.; Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996. · Zbl 1031.65047
[40] Senior, T. B.A.; Volakis, J. L., Approximate Boundary Conditions in Electromagnetics (1995), IEE Press: IEE Press New York and London · Zbl 0828.73001
[41] Singer, I.; Turkel, E., A perfectly matched layer for the Helmholtz equation in a semi-infinite strip, Journal of Computational Physics, 201, 2, 439-465 (2004) · Zbl 1061.65109
[42] Stupfel, B., A hybrid finite element and integral equation domain decomposition method for the solution of the 3-D scattering problem, Journal of Computational Physics, 172, 2, 451-471 (2001) · Zbl 0992.78014
[43] Taylor, M. E., Pseudodifferential Operators (1981), Princeton University Press: Princeton University Press Princeton, New Jersey · Zbl 0453.47026
[44] Toselli, A.; Windlund, O., Domain Decomposition Methods Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34 (2004), Springer
[45] Turkel, E.; Yefet, A., Absorbing PML boundary layers for wave-like equations, Applied Numerical Mathematics, 27, 4, 533-557 (1998) · Zbl 0933.35188
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.