## Estimates for blow-up solutions to nonlinear elliptic equations with $$p$$-growth in the gradient.(English)Zbl 1247.35050

For $$N\geq2$$ and a bounded domain $$\Omega\subseteq\mathbb{R}^N$$ denote the symmetrization of $$\Omega$$ by $$\Omega^\#$$, the open ball in $$\mathbb{R}^N$$ such that $$| \Omega|=| \Omega^\#|$$. Denote by $$\Delta_p$$ for $$p>1$$ the usual $$p$$-Laplacian and consider the problems $\begin{cases} \Delta_p u\pm| \nabla u|^p=f(u),&\text{in } \Omega,\\ u(x)\to\infty,&\text{as } x\to\partial\Omega, \end{cases}\tag{1}$ and $\begin{cases} \Delta_p u\pm| \nabla u|^p=f(u),&\text{in } \Omega^\#,\\ u(x)\to\infty,&\text{as } x\to\partial\Omega^\#. \end{cases}\tag{2}$ Solutions of this kind are commonly called large solutions.
In case of the plus sign in front of the gradient term, it is assumed that $$\beta(s):=(p-1)^{1-p}s^{p-1}f((p-1)\log s)$$ is continuous, increasing, satisfies $$\beta(0)=0$$ and Keller’s condition, which is typical for the existence theory of large solutions of a related transformed problem. On the other hand, in the case of a negative sign in front of the gradient term, assume that $$F(r):=(p-1)^{1-p}r^{p-1}f((1-p)\log r)$$ is decreasing and satisfies $$\lim_{r\to 0+}F(r)<+\infty$$.
It is proved that if $$u$$ is a weak solution of (1) and $$v$$ the unique radial solution of (2) then $\text{ess\,inf}_{x\in\Omega}u(x) \geq\text{ess\,inf}_{x\in\Omega^\#}v(x).$ The results are formulated in much more generality, allowing for general differential operators in (1) that satisfy certain growth conditions related to the operators in (2). The positive case is proved using the radial rearrangement of the solution, and the proof for the negative case involves the maximum principle.

### MSC:

 35J92 Quasilinear elliptic equations with $$p$$-Laplacian 35J62 Quasilinear elliptic equations 35J25 Boundary value problems for second-order elliptic equations 35B06 Symmetries, invariants, etc. in context of PDEs 35B09 Positive solutions to PDEs 35B44 Blow-up in context of PDEs
Full Text:

### References:

 [1] Alvino, A., Lions, P.-L. and Trombetti, G., Comparison results for elliptic and parabolic equations via Schwarz symmetrization. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 37 - 65. · Zbl 0703.35007 [2] Bandle, C., Isoperimetric Inequalities and Applications. Monographs Studies Math. 7. Boston (Mass): Pitman 1980. · Zbl 0436.35063 [3] Bandle, C. and Essén, M., On the solution of quasilinear elliptic problems with boundary blow-up. In: Partial Differential Equations of Elliptic Type (Cortona 1992; eds.: A. Alvino et al.). Symposia Math. XXXV. Cambridge: Cambridge Univ. Press 1994, pp. 93 - 111. · Zbl 0806.35045 [4] Bandle, C. and Giarrusso, E., Boundary blow up for semilinear elliptic equa- tions with nonlinear gradient terms. Adv. Diff. Equ. 1 (1996), 133 - 150. · Zbl 0840.35034 [5] Bandle, C., Greco, A. and Porru, G., Large solutions of quasilinear elliptic equations: existence and qualitative properties. Boll. Un. Mat. Ital. B (7) 11 (1997), 227 - 252. · Zbl 0887.35056 [6] Bandle, C. and Marcus, M., Un théor‘eme de comparison pour un probl‘eme elliptique avec une non-linéarité singuli‘ere (in French). C.R. Acad. Sci. Paris Sér. A-B 287 (1978), A861 - A863. · Zbl 0402.35010 [7] Bandle, C. and Marcus, M., Sur les solutions maximales de probl‘emes ellip- tiques nonlin‘eaires: bornes isopérimétriques et comportement asymptotique (in French). C.R. Acad. Sci. Paris Sér. I Math. 311 (1990), 91 - 93. · Zbl 0726.35041 [8] Bandle, C. and Marcus, M., “Large” solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour. J. Anal. Math. 58 (1992), 9 - 24. · Zbl 0802.35038 [9] Bandle, C. and Marcus, M., On second-order effects in the boundary behaviour of large solutions of semilinear ellipt problems. Diff. Int. Equ. 11 (1998), 23 - 34. · Zbl 1042.35535 [10] Bello Castillo, E. and Letelier Albornoz, R., Local gradient estimates and exis- tence of blow-up solutions to a class of quasilinear elliptic equations. J. Math. Anal. Appl. 280 (2003), 123 - 132. · Zbl 1284.35190 [11] Berhanu, S. and Porru, G., Qualitative and quantitative estimate for large solutions to semilinear equations. Comm. Appl. Anal. 4 (2000), 121 - 131. · Zbl 1090.35526 [12] Bieberbach, L., \Delta u = eu und die automorphen Funktionen (in German). Math. Ann. 77 (1916), 173 - 212. [13] De Giorgi, E., Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r dimensioni (in Italian). Ann. Mat. Pura Appl. (4) 36 (1954), 191 - 213. · Zbl 0055.28504 [14] Díaz, G. and Letelier, R., Explosive solutions of quasilinear elliptic equations: existence and uniqueness. Nonlinear Anal. 20 (1993), 97 - 125. · Zbl 0793.35028 [15] Ghergu, M., Niculescu, C. and R\?adulescu, V., Explosive solutions of elliptic equations with absorption and non-linear gradient term. Proc. Indian Acad. Sci. Math. Sci. 112 (2002), 441 - 451. 233 · Zbl 1032.35070 [16] Giarrusso, E., On blow up solutions of a quasilinear elliptic equation. Math. Nachr. 213 (2000), 89 - 104. · Zbl 0954.35066 [17] Gladiali, F. and Porru, G., Estimates for explosive solutions to p-Laplace equa- tions. In: Progress in Partial Differential Equations, Vol. 1 (Pont-‘a-Mousson 1997; eds.: H. Amann et al.). Pitman Res. Notes Math. 383. Harlow: Longman 1998, pp. 117 - 127 · Zbl 0916.35041 [18] Greco, A. and Porru, G., Asymptotic estimate for and convexity of large solu- tions to semilinear elliptic equations. Diff. Int. Equ. 10 (1997), 219 - 229. · Zbl 0889.35028 [19] Hardy, G. H., Littlewood J. L. and Pólya, G., Inequalities. Cambridge: Cam- bridge Univ. Press 1952. [20] Kawohl, B., Rearrangements and Convexity of Level Sets in PDE. Lect. Notes Math. 1150. Berlin: Springer 1985. · Zbl 0593.35002 [21] Keller, J. B., On solutions of \Delta u = f (u). Comm. Pure Appl. Math. 10 (1957), 503 - 510. · Zbl 0090.31801 [22] Kondrat’ev, V. A. and Nikishkin, V. A., On the asymptotic behavior near the boundary of the solution of a singular boundary value problem for a semilinear elliptic equation (in Russian). Diff. Uravneniya 26 (1990), 465 - 468; transl. in Diff. Equ. 26 (1990), 345 - 348. · Zbl 0706.35054 [23] Lasry, J. M. and Lions, P.-L., Nonlinear elliptic equations with singular bound- ary conditions and stocastic control with state constraints. I. The model prob- lem. Math. Ann. 283 (1989), 583 - 630. · Zbl 0688.49026 [24] Lazer, A. C. and McKenna, P. J., On a problem of Bieberbach and Rademacher. Nonlinear Anal. 21 (1993), 327 - 335. · Zbl 0833.35052 [25] Lazer, A. C. and McKenna, P. J., Asymptotic behaviour of solutions of bound- ary blow-up problems. Diff. Int. Equ. 7 (1994), 1001 - 1019. · Zbl 0811.35010 [26] Maderna, C., Optimal problems for a certain class of nonlinear Dirichlet prob- lems. Boll. Un. Mat. Ital. Suppl. 1980, 31 - 43. · Zbl 0443.35014 [27] McKenna, P. J., Reichel, W. and Walter, W., Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up. Nonlinear Anal. 28 (1997), 1213 - 1225. · Zbl 0868.35031 [28] Mohammed, A., Porcu, G. and Porru, G., Large solutions to some non-linear O.D.E. with singular coefficients. Nonlinear Anal. 47 (2001), 513 - 524. · Zbl 1042.34534 [29] Mossino, J., Inégalités Isopérimétriques et Applications en Physique (in French). Travaux en Cours. Paris: Hermann 1985. [30] Porretta, A. and Véron, L., Asymptotic behaviour of the gradient of large solutions to some nonlinear elliptic equations. Adv. Nonlinear Stud. 6 (2006), 351 - 378. · Zbl 1221.35141 [31] Porru, G. and Vitolo, A., Problems for elliptic singular equations with a quadratic gradient term. J. Math. Anal. Appl. 334 (2007), 467 - 486. · Zbl 1156.35032 [32] Posteraro, M. R., On the solutions of the equation \Delta u = eu blowing up on the boundary. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 445 - 450. · Zbl 0848.35037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.