×

A new method to solve the non-perturbative renormalization group equations. (English) Zbl 1247.81308

Summary: We propose a method to solve the non-perturbative renormalization group equations for the \(n\)-point functions. In leading order, it consists in solving the equations obtained by closing the infinite hierarchy of equations for the \(n\)-point functions. This is achieved: (i) by exploiting the decoupling of modes and the analyticity of the \(n\)-point functions at small momenta: this allows us to neglect some momentum dependence of the vertices entering the flow equations; (ii) by relating vertices at zero momenta to derivatives of lower order vertices with respect to a constant background field. Although the approximation is not controlled by a small parameter, its accuracy can be systematically improved. When it is applied to the \(O(N)\) model, its leading order is exact in the large-\(N\) limit; in this case, one recovers known results in a simple and direct way, i.e., without introducing an auxiliary field.

MSC:

81T17 Renormalization group methods applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Tetradis, N.; Wetterich, C., Nucl. Phys. B, 422, 541 (1994)
[2] Ellwanger, U., Z. Phys. C, 62, 503 (1994)
[3] Morris, T. R., Int. J. Mod. Phys. A, 9, 2411 (1994)
[4] Morris, T. R., Phys. Lett. B, 329, 241 (1994)
[5] Berges, J.; Tetradis, N.; Wetterich, C., Phys. Rep., 363, 223 (2002)
[6] Bagnuls, C.; Bervillier, C., Phys. Rep., 348, 91 (2001)
[7] Delamotte, B.; Canet, L.
[8] Weinberg, S., Phys. Rev. D, 8, 3497 (1973)
[9] Fischer, C. S.; Gies, H., JHEP, 0410, 048 (2004)
[10] Alkofer, R.; von Smekal, L., Phys. Rep., 353, 281 (2001), For a review, see
[11] Morris, T. R., Phys. Lett. B, 334, 355 (1994)
[12] Blaizot, J.-P.; Méndez-Galain, R.; Wschebor, N.
[14] Ball, R. D.; Haagensen, P. E.; Latorre, J. I.; Moreno, E., Phys. Lett. B, 347, 80 (1995)
[15] Comellas, J., Nucl. Phys. B, 509, 662 (1998)
[16] Litim, D., Int. J. Mod. Phys. A, 16, 2081 (2001)
[17] Canet, L.; Delamotte, B.; Mouhanna, D.; Vidal, J., Phys. Rev. D, 67, 065004 (2003)
[18] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena, (International Series of Monographs on Physics, vol. 113 (2002)), 1
[19] Berges, J.; Tetradis, N.; Wetterich, C., Phys. Rev. Lett., 77, 873 (1996)
[20] Litim, D. F., Phys. Rev. D, 64, 105007 (2001)
[21] Canet, L.; Delamotte, B.; Mouhanna, D.; Vidal, J., Phys. Rev. B, 68, 064421 (2003)
[22] Golner, G. R.
[23] Moshe, M.; Zinn-Justin, J., Phys. Rep., 385, 69 (2003)
[24] D’Attanasio, M.; Morris, T. R., Phys. Lett. B, 409, 363 (1997)
[26] Tetradis, N.; Litim, D. F., Nucl. Phys. B, 464, 492 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.