Mahmoud, Gamal M.; Ahmed, Mansour E.; Sabor, Nabil On autonomous and nonautonomous modified hyperchaotic complex Lü systems. (English) Zbl 1248.34053 Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, No. 7, 1913-1926 (2011). Summary: Autonomous and nonautonomous modified hyperchaotic complex Lü systems are proposed. Our systems have been generated by using state feedback and complex periodic forcing. The basic properties of these systems are studied. Parameters range for hyperchaotic attractors to exist are calculated. These systems have very rich dynamics in a wide range of parameters. The analytical results are tested numerically and excellent agreement is found. A circuit diagram is designed for one of these hyperchaotic complex systems and simulated using Matlab/Simulink to verify the hyperchaotic behavior. Cited in 9 Documents MSC: 34C28 Complex behavior and chaotic systems of ordinary differential equations 34D45 Attractors of solutions to ordinary differential equations 34C23 Bifurcation theory for ordinary differential equations 34D08 Characteristic and Lyapunov exponents of ordinary differential equations 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior Keywords:hyperchaotic attractors; chaotic; complex; fixed points; stability Software:Simulink; Matlab PDF BibTeX XML Cite \textit{G. M. Mahmoud} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, No. 7, 1913--1926 (2011; Zbl 1248.34053) Full Text: DOI References: [1] Barbara C., Int. J. Circuits Theor. Appl. 30 pp 625– [2] DOI: 10.1007/s11071-009-9558-0 · Zbl 1183.70049 [3] DOI: 10.1016/j.physa.2005.09.039 [4] DOI: 10.1016/j.physleta.2010.01.030 · Zbl 1236.34016 [5] DOI: 10.1016/0167-2789(83)90123-9 · Zbl 1194.76087 [6] DOI: 10.1016/0167-2789(82)90053-7 · Zbl 1194.76280 [7] DOI: 10.1142/S0218127499000493 · Zbl 0980.37032 [8] DOI: 10.1080/002071799220614 · Zbl 0989.93069 [9] DOI: 10.1109/TCSII.2004.838657 [10] DOI: 10.1142/S0218127405013988 [11] Li Y., IEEE Trans. Circuits Syst.-II 52 pp 204– [12] DOI: 10.1142/S0129183101002073 [13] DOI: 10.1142/S0218127404011624 · Zbl 1091.34524 [14] Mahmoud G. M., Int. J. Appl. Math. Stat. 12 pp 90– [15] DOI: 10.1142/S0218127407019962 · Zbl 1146.93372 [16] DOI: 10.1142/S0129183108013151 · Zbl 1170.37311 [17] DOI: 10.1088/1751-8113/41/5/055104 · Zbl 1131.37036 [18] DOI: 10.1007/s11071-009-9513-0 · Zbl 1183.70053 [19] DOI: 10.1080/14689360802438298 · Zbl 1172.34033 [20] DOI: 10.1109/TCS.1986.1085862 [21] DOI: 10.1016/S0167-2789(96)00129-7 · Zbl 0887.34048 [22] DOI: 10.1016/0375-9601(79)90150-6 · Zbl 0996.37502 [23] DOI: 10.1016/j.physa.2006.03.048 [24] DOI: 10.1007/s11071-009-9552-6 · Zbl 1183.70055 [25] DOI: 10.1364/JOSAB.2.000018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.