Deshouillers, Jean-Marc; Ruzsa, Imre Z. The least nonzero digit of \(n!\) in base \(12\). (English) Zbl 1249.11044 Publ. Math. Debr. 79, No. 3-4, 395-400 (2011). Summary: We positively answer a question raised by the first author and prove that, for \(1 \leq a \leq 11\), the sequence \(\{n:\ell_{12}(n!)=a\}\) has an asymptotic density, which is \(1/2\) if \(a=4\) or \(a=8\) and \(0\) otherwise; here \(\ell_{b}(m)\) denotes the least nonzero digit of \(m\) in base \(b\). Cited in 4 ReviewsCited in 5 Documents MSC: 11B85 Automata sequences 11B05 Density, gaps, topology 11A63 Radix representation; digital problems Keywords:digit; factorial; automata; density PDF BibTeX XML Cite \textit{J.-M. Deshouillers} and \textit{I. Z. Ruzsa}, Publ. Math. Debr. 79, No. 3--4, 395--400 (2011; Zbl 1249.11044) Full Text: DOI Online Encyclopedia of Integer Sequences: Final nonzero digit of n! in base 12.