×

New oscillation criteria for second-order neutral dynamic equations on time scales via Riccati substitution. (English) Zbl 1252.34104

The authors consider the second-order nonlinear neutral functional dynamic equation \[ (p(t)([y(t)+r(t)y(\tau(t))]^{\Delta})^{\gamma})^{\Delta}+f(t,y(\delta(t)))=0 \] on a time-scale \(T\) and establish some new sufficient conditions for oscillation. This type of equation has not been studied yet, so the main results in this paper are new. Also, the obtained results cover the cases when \(\delta(T)>t\) and when \(\delta(T)\leq t\). The results in this paper can be applied to any time-scale.

MSC:

34N05 Dynamic equations on time scales or measure chains
34K11 Oscillation theory of functional-differential equations
34K40 Neutral functional-differential equations

References:

[1] R. P. Agarwal, D. O’Regan and S. H. Saker, Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. and Appl. 300 (2004), 203-217. · Zbl 1062.34068 · doi:10.1016/j.jmaa.2004.06.041
[2] R. P. Agarwal, D. O’Regan and S. H. Saker, Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales, Appl. Anal. Vol. 86 (2007), 1-17. · Zbl 1128.34042 · doi:10.1081/00036810601091630
[3] R. P. Agarwal, D. O’Regan and S. H. Saker, Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales, Acta Math. Sinica 24 (2008), 1409-1432. · Zbl 1153.34040 · doi:10.1007/s10114-008-7090-7
[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales : An Introduction with Applications, Birkhäuser, Boston, 2001. · Zbl 0978.39001
[5] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales , Birkhäuser, Boston, 2003. · Zbl 1025.34001
[6] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990) 18-56. · Zbl 0722.39001 · doi:10.1007/BF03323153
[7] R. M. Mathsen, Q. Wang and H. Wu, Oscillation for neutral dynamic functional equations on time scales, J. Diff. Eqns. Appl. 10 (2004), 651-659. · Zbl 1060.34038 · doi:10.1080/10236190410001667968
[8] Y. Şahiner, Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales, Adv. Difference Eqns. 2006 (2006), 1-9. · Zbl 1139.39302 · doi:10.1155/ADE/2006/65626
[9] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2001. · Zbl 0986.05001
[10] W. Kelley and A. Peterson, Difference Equations: An Introduction With Applications , second edition, Harcourt/Academic Press, San Diego, 2001. · Zbl 0970.39001
[11] S. H. Saker, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comp. Appl. Math., 177 (2005) 375-387. · Zbl 1097.39003 · doi:10.1016/j.cam.2005.03.039
[12] S. H. Saker, Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type, Dynamic Sys. Appl. 15 (2006), 629-644.
[13] S. H. Saker, Oscillation criteria for a certain class of second-order neutral delay dynamic equations, Dynamics of Cont. Discr. Impul. Syst. Series B: Applications & Algorithms (accepted). · Zbl 1180.34067
[14] V. Spedding, Taming Nature’s Numbers, New Scientist, July 19, 2003, 28-31.
[15] A. K. Tirpathy, Some oscillation results for second order nonlinear dynamic equations of neutral type, Nonlinear Analysis (2009) doi: 10.1016/j. na.2009.02046.
[16] H. -Wu Wu, R. K. Zhuang and R. M. Mathsen, Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations, Appl. Math. 178 (2006), 231-331. · Zbl 1104.39009 · doi:10.1016/j.amc.2005.11.049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.