On nef and semistable Hermitian lattices, and their behaviour under tensor product. (English) Zbl 1256.11030

Let \(\overline{E}\) be a \(\mathbb{Z}\)-lattice of full rank on a finite-dimensional euclidean vector space. The degree of \(\overline{E}\) is defined as \(\widehat{\deg}(\overline{E})=-\log (\text{vol}(\overline{E}))\), and the slope of \(\overline{E}\) as \(\mu(\overline{E})= \widehat{\deg}(\overline{E})/\text{rk}(\overline{E})\). The supremum of all slopes of all sublattices of any rank of \(\overline{E}\) is denoted by \(\mu_{\max}(\overline{E})\), and \(\overline{E}\) is called semistable if \(\mu(\overline{E})=\mu_{\max}(\overline{E})\). For example, integral unimodular lattices are semistable. For any pair \(\overline{E}_1, \overline{E}_2\) of nonzero euclidean lattices one can show that \(\mu(\overline{E}_1\otimes\overline{E}_2)= \mu(\overline{E}_1)+\mu(\overline{E}_2)\), and J.-B. Bost conjectured in the 1990s that this relation also holds for \(\mu_{\max}\). It follows from the result for \(\mu\) that \(\mu_{\max}(\overline{E}_1\otimes\overline{E}_2)\geq \mu_{\max}(\overline{E}_1)+\mu_{\max}(\overline{E}_2)\). The best known upper bound for \(\mu_{\max}\) of the tensor product is given by \(\mu_{\max}(\overline{E}_1\otimes\overline{E}_2)\leq \mu_{\max}(\overline{E}_1)+\mu_{\max}(\overline{E}_2)+ \frac{1}{2}\log(\text{rk}(\overline{E}_1\otimes\overline{E}_2))\). The author gives a new and elementary proof of this inequality.
If one replaces lattices by vector bundles \(E\) over a smooth projective curve \(S\) over a field of characteristic \(0\), one defines in complete analogy the slope of \(E\) as \(\mu (E)=\deg(E)/\text{rk}(E)\), and similarly \(\mu_{\max}\) by considering nonzero subbundles. Semistability can also be expressed in the same way as above. In this context, it is known for some time that the analogue of Bost’s conjecture holds and it was first shown by M. S. Narasimhan and C. S. Seshadri [Ann. Math. (2) 82, 540–567 (1965; Zbl 0171.04803)]. Another proof relies on the fact that a degree zero vector bundle is semistable if and only if it is a so-called nef (numerical efficiency) vector bundle, i.e. if its pull-back along any finite covering of \(S\) has no quotient line bundle of negative degree. The author gives a new simple version of this proof which also works for strongly semistable vector bundles in positive characteristic.
He then considers hermitian lattices \(\overline{E}\) over \(\overline{S}=\text{spec}(\mathfrak{o}_K)\cup V_{\infty}\) where \(K\) is a number field with ring of integers \(\mathfrak{o}_K\) and set of archimedean places \(V_{\infty}\). Defining the volume by taking appropriate products over \(V_{\infty}\), one defines analogous notions of \(\widehat{\deg}\), \(\mu\), \(\mu_{\max}\). Improving on earlier results by Chen and by Bost and Künnemann, the author shows that for hermitian lattices \(\overline{E}_1, \overline{E}_2\) over \(\overline{S}\), one has \[ \mu_{\max}(\overline{E}_1\otimes\overline{E}_2)\leq \mu_{\max}(\overline{E}_1)+\mu_{\max}(\overline{E}_2)+ \frac{[K:\mathbb{Q}]}{2}\log(\text{rk}(\overline{E}_1\otimes\overline{E}_2)) \]
The author develops a categorical setting in which all these cases with their definitions are just special cases, and considers another special case, namely what he calls generalized vector bundles with appropriate notions of slope and semistability of which the so-called multifiltered vector spaces are a subcase. If \(\overline{M}_1, \overline{M}_2\) are multifiltered spaces, then again one has the relation \(\mu_{\max}(\overline{M}_1\otimes\overline{M}_2)= \mu_{\max}(\overline{M}_1)+\mu_{\max}(\overline{M}_2)\). There are several proofs in the literature. The author provides a completely new and elementary proof inspired by his own proof of the result on euclidean lattices mentioned above.


11E39 Bilinear and Hermitian forms
14G25 Global ground fields in algebraic geometry
14H60 Vector bundles on curves and their moduli


Zbl 0171.04803
Full Text: DOI arXiv


[1] Y. André, Slope filtrations, Confluentes Math. 1 (2009), 1-85. · Zbl 1213.14039
[2] C. M. Barton, Tensor products of ample vector bundles in characteristic \(p\), Amer. J. Math. 93 (1971), 429-438. · Zbl 0221.14011
[3] T. Borek, Successive minima and slopes of hermitian vector bundles over number fields, J. Number Theory 113 (2005), 380-388. · Zbl 1100.14513
[4] J.-B. Bost and K. Künnemann, Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers, Adv. Math. 223 (2010), 987-1106. · Zbl 1187.14027
[5] J.-B. Bost, H. Gillet and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), 903-1027. · Zbl 0973.14013
[6] H. Brenner, Slopes of vector bundles on projective curves and applications to tight closure problems, Trans. Amer. Math. Soc. 356 (2003), 371-392. · Zbl 1041.13002
[7] U. Bruzzo and D. Hernández Ruiprez, Semistability vs. nefness for (Higgs) vector bundles, Differential Geom. Appl. 24 (2006), 403-416. · Zbl 1108.14028
[8] B. Casselman, Stability of lattices and the partition of arithmetic quotients, Asian J. Math. 8 (2004), 607-637. · Zbl 1086.22007
[9] H. Chen, Maximal slope of tensor product of Hermitian vector bundles, J. Algebraic Geom. 18 (2009), 575-603. · Zbl 1170.14013
[10] R. Coulangeon, Tensor products of Hermitian lattices, Acta Arith. 92 (2000), 115-130. · Zbl 0951.11023
[11] R. Coulangeon, Voronoi theory over algebraic number fields, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math. 37 (2001), 147-162. · Zbl 1139.11321
[12] E. De Shalit and O. Parzanchevski, On tensor products of semistable lattices, preprint Univ. Jerusalem 2006 (available at http://www.ma.huji.ac.il/\(\sim\)deshalit/). · Zbl 1139.14021
[13] G. Faltings, Mumford-Stabilität in der algebraischen Geometrie, Proc. Intern. Congress Math. (Zürich 1994), 648-655, Birkhäuser, 1995. · Zbl 0871.14010
[14] G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces, Invent. Math. 116 (1994), 109-138. · Zbl 0805.14011
[15] É. Gaudron, Pentes des fibrés vectoriels adéliques sur un corps global, Rend. Semin. Mat. Univ. Padova 119 (2008), 21-95. · Zbl 1206.14047
[16] É. Gaudron, Géométrie des nombres adélique et formes linéaires de logarithmes dans un groupe algébrique commutatif, Mémoire d’habilitation 2009 (unpublished, available at http://www-fourier.ujf-grenoble.fr/\(\sim\)gaudron/).
[17] R. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59 (1984), 600-634. · Zbl 0564.20027
[18] D. Hoffmann, On positive definite Hermitian forms, Manuscripta Math. 71 (1991), 399-429. · Zbl 0729.11020
[19] N. Hoffmann, Stability of Arakelov bundles and tensor products without global sections, Doc. Math. 8 (2003), 115-123. · Zbl 1074.14022
[20] N. Hoffmann, J. Jahnel and U. Stuhler, Generalized vector bundles on curves, J. Reine Angew. Math. 495 (1998), 35-60. · Zbl 0908.14011
[21] P. Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique \(K\) fini, Comment. Math. Helv. 12 (1940), 263-306. · Zbl 0023.19905
[22] M. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Soc. (2) 55 (1997), 11-22. · Zbl 0874.11047
[23] Y. Kim, On semistability of root lattices and perfect lattices, preprint Univ. Illinois 2009 (available at http://www.math.uiuc.edu/\(\sim\)ykim33/).
[24] Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Math. 106, Cambridge Univ. Press, 1993. · Zbl 0785.11021
[25] S. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. 84 (1966), 293-344. · Zbl 0146.17001
[26] R. Lazarsfeld, Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergeb. der Math. und ihrer Grenzgebiete 49, Springer-Verlage, Berlin, 2004. · Zbl 1093.14500
[27] J. Martinet, Perfect lattices in Euclidean spaces, Grundlehren Math. Wiss. 327, Springer-Verlage, Berlin, 2003. · Zbl 1017.11031
[28] M. Maruyama, The theorem of Grauert-Mühlich-Spindler, Math. Ann. (1981), 317-333. · Zbl 0438.14015
[29] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, 449-476, Adv. Stud. Pure Math. 10, North-Holland, 1987. · Zbl 0648.14006
[30] A. Moriwaki, Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves, J. Amer. Math. Soc. 11 (1998), 569-600. · Zbl 0893.14004
[31] A. Moriwaki, Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000), 101-142. · Zbl 1007.11042
[32] M. Narasimhan and C. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540-567. · Zbl 0171.04803
[33] A. Pekker, On successive minima and the absolute Siegel’s Lemma, J. Number Theory 128 (2007), 564-575. · Zbl 1195.11085
[34] S. Ramanan and A. Ramanathan, Some remarks on the instability flag, Tohoku Math. J. 36 (1984), 269-291. · Zbl 0567.14027
[35] M. Rapoport, Analogien zwischen den Modulräumen von Vektorbündeln und von Flaggen (DMV Tagung, Ulm, 1995), Jahresber. Deutsch. Math.-Verein. 99 (1997), 164-180. · Zbl 0891.14010
[36] D. Roy and J. Thunder, An absolute Siegel lemma, J. Reine Angew. Math. 476 (1996), 1-26, addendum et erratum, ibid. 508 (1999), 47-51.
[37] C. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95. · Zbl 0814.32003
[38] U. Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischen Formen, Arch. Math. 27 (1976), 604-610. · Zbl 0338.10024
[39] B. Totaro, Tensor products of semistables are semistable, Geometry and analysis on complex manifolds 242-250, World Sci. Publ., Singapore, 1994. · Zbl 0873.14016
[40] S. Zhang, Positive line bundles on arithmetic varieties J. Amer. Math. Soc. 8 (1995), 187-221. · Zbl 0861.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.