Moslehian, Mohammad Sal; Rassias, Themistocles M. Stability of functional equations in non-Archimedean spaces. (English) Zbl 1257.39019 Appl. Anal. Discrete Math. 1, No. 2, 325-334 (2007). Summary: We prove the generalized Hyers-Ulam stability of the Cauchy functional equation \(f(x+y) = f(x)+f(y)\) and the quadratic functional equation \(f(x+ y) f(x - y) = 2f(x) + 2f(y)\) in non-Archimedean normed spaces. Cited in 12 ReviewsCited in 84 Documents MSC: 39B22 Functional equations for real functions 39B82 Stability, separation, extension, and related topics for functional equations Keywords:generalized Hyers-Ulam stability; Cauchy functional equation; quadratic functional equation; non-Archimedean space; \(p\)-adic field PDF BibTeX XML Cite \textit{M. S. Moslehian} and \textit{T. M. Rassias}, Appl. Anal. Discrete Math. 1, No. 2, 325--334 (2007; Zbl 1257.39019) Full Text: DOI OpenURL