Jones, Vaughan F. R. Quadratic tangles in planar algebras. (English) Zbl 1257.46033 Duke Math. J. 161, No. 12, 2257-2295 (2012). Summary: In planar algebras, we show how to project certain simple quadratic tangles onto the linear space spanned by linear and constant tangles. We obtain some corollaries about the principal graphs and annular structure of subfactors. Cited in 1 ReviewCited in 37 Documents MSC: 46L37 Subfactors and their classification 18D50 Operads (MSC2010) 16T99 Hopf algebras, quantum groups and related topics 57M27 Invariants of knots and \(3\)-manifolds (MSC2010) Keywords:planar algebras; quadratic tangles; subfactors PDF BibTeX XML Cite \textit{V. F. R. Jones}, Duke Math. J. 161, No. 12, 2257--2295 (2012; Zbl 1257.46033) Full Text: DOI arXiv Euclid OpenURL References: [1] M. Asaeda and U. Haagerup, Exotic subfactors of finite depth with Jones indices \({(5+\sqrt{13})}/{2}\) and \({(5+\sqrt{17})}/{2}\) , Comm. Math. Phys. 202 (1999), 1-63. · Zbl 1014.46042 [2] S. Bigelow, S. Morrison, E. Peters, and N. Snyder, Constructing the extended Haagerup planar algebra , preprint, [math.QA] 0909.4099v2 · Zbl 1239.57031 [3] D. Bisch and V. F. R. Jones, Algebras associated to intermediate subfactors , Invent. Math. 128 (1997), 89-157. · Zbl 0891.46035 [4] D. E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras , Oxford Math. Monogr., Oxford University Press, New York, 1998. · Zbl 0924.46054 [5] F. M. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter Graphs and Towers of Algebras , Math. Sci. Res. Inst. Publ. 14 , Springer, New York, 1989. · Zbl 0698.46050 [6] J. J. Graham and G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras , Enseign. Math. (2) 44 (1998), 173-218. · Zbl 0964.20002 [7] P. Grossman and V. F. R. Jones, Intermediate subfactors with no extra structure , J. Amer. Math. Soc. 20 (2007), 219-265. · Zbl 1131.46041 [8] U. Haagerup, “Principal graphs of subfactors in the index range \(4<3+\sqrt{2}\)” in Subfactors (Kyuzeso, 1993) , World Scientific, River Edge, N.J., 1994, 1-38. · Zbl 0933.46058 [9] T. Halverson and A. Ram, Partition algebras , European J. Combin. 26 (2005), 869-921. · Zbl 1112.20010 [10] M. Izumi, V. F. R. Jones, S. Morrison, and N. Snyder, Subfactors of index less than 5, Part 3: Quadruple points , preprint, to appear in Comm. Math. Phys. · Zbl 1272.46051 [11] V. F. R. Jones, Index for subfactors , Invent. Math. 72 (1983), 1-25. · Zbl 0508.46040 [12] V. F. R. Jones, “The Potts model and the symmetric group” in Subfactors (Kyuzeso, 1993) , World Scientific, River Edge, N.J., 1994, 259-267. · Zbl 0938.20505 [13] V. F. R. Jones, A quotient of the affine Hecke algebra in the Brauer algebra , Enseign. Math. (2) 40 (1994), 313-344. · Zbl 0852.20035 [14] V. F. R. Jones, “The annular structure of subfactors” in Essays on Geometry and Related Topics, 1, 2 , Monogr. Enseign. Math. 38 , Enseignement Math., Geneva, 2001, 401-463. · Zbl 1019.46036 [15] V. F. R. Jones, Planar algebras, I , preprint, [math.QA] · Zbl 0503.46045 [16] V. F. R. Jones, Quadratic tangles in planar algebras , in preparation. · Zbl 1257.46033 [17] V. F. R. Jones and S. A. Reznikoff, Hilbert space representations of the annular Temperley-Lieb algebra , Pacific J. Math. 228 (2006), 219-249 · Zbl 1131.46042 [18] P. P. Martin, The partition algebra and the Potts model transfer matrix spectrum in high dimensions , J. Phys. A 33 (2000), 3669-3695. · Zbl 0951.82006 [19] S. Morrison, D. Penneys, E. Peters, and N. Snyder, Subfactors of index less than 5, Part 2: Triple points , preprint, Internat. J. Math. 23 (2012), 33pp. · Zbl 1246.46054 [20] S. Morrison and N. Snyder, Subfactors of index less than 5, Part 1: The principal graph odometer , Comm. Math. Phys. 312 (2012), 1-35. · Zbl 1246.46055 [21] E. Peters, A planar algebra construction of the Haagerup subfactor , Internat. J. Math. 21 (2010), 987-1045 · Zbl 1203.46039 [22] S. Popa, Classification of subfactors: The reduction to commuting squares , Invent. Math. 101 (1990), 19-43. · Zbl 0757.46054 [23] S. Popa, An axiomatization of the lattice of higher relative commutants of a subfactor , Invent. Math. 120 (1995), 427-445. · Zbl 0831.46069 [24] H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the “percolation” problem , Proc. Roy. Soc. Lond. Ser. A 322 (1971), 251-280. · Zbl 0211.56703 [25] H. Wenzl, On sequences of projections , C. R. Math. Acad. Sci. Soc. R. Can. 9 (1987), 5-9. · Zbl 0622.47019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.