×

Global bifurcation in \(2m\)-order generic systems of nonlinear boundary value problems. (English) Zbl 1260.34030

Summary: We consider the system \[ \begin{aligned} (-1)^m u^{(2m)} &= \lambda u + \lambda v + uf(t, u, v),\quad t \in (0, 1),\\ u^{(2i)}(0)& = u^{(2i)}(1) = 0,\quad 0 \leq i \leq m - 1,\\ (-1)^m v^{(2m)}& = \mu u + \mu v + vg(t, u, v),\quad t \in (0, 1),\\ v^{(2i)}(1)& = 0,\quad 0 \leq i \leq m - 1,\end{aligned} \] where \(\lambda, \mu \in \mathbb R\) are real parameters. \(f, g : [0, 1] \times \mathbb R^2 \rightarrow \mathbb R\) are \(C^k,\;k \geq 3\) functions and \(f(t, 0, 0) \equiv g(t, 0, 0) \equiv 0,\;t \in [0, 1]\). It is shown that, if the functions, \(f\) and \(g\) are “generic”, then the solution set of the system consists of a countable collection of two-dimensional \(C^k\) manifolds.

MSC:

34B08 Parameter dependent boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. P. Rynne, “Global bifurcation in generic systems of nonlinear Sturm-Liouville problems,” Proceedings of the American Mathematical Society, vol. 127, no. 1, pp. 155-165, 1999. · Zbl 0905.34021 · doi:10.1090/S0002-9939-99-04763-2
[2] R. S. Cantrell, “Multiparameter bifurcation problems and topological degree,” Journal of Differential Equations, vol. 52, no. 1, pp. 39-51, 1984. · Zbl 0488.47033 · doi:10.1016/0022-0396(84)90132-3
[3] U. Elias, “Eigenvalue problems for the equations Ly+\lambda p(x)y=0,” Journal of Differential Equations, vol. 29, no. 1, pp. 28-57, 1978. · Zbl 0351.34014 · doi:10.1016/0022-0396(78)90039-6
[4] J. C. Saut and R. Temam, “Generic properties of nonlinear boundary value problems,” Communications in Partial Differential Equations, vol. 4, no. 3, pp. 293-319, 1979. · Zbl 0462.35016 · doi:10.1080/03605307908820096
[5] P. Brunovský and P. Polá\vcik, “The Morse-Smale structure of a generic reaction-diffusion equation in higher space dimension,” Journal of Differential Equations, vol. 135, no. 1, pp. 129-181, 1997. · Zbl 0868.35062 · doi:10.1006/jdeq.1996.3234
[6] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, 2nd edition, 1980. · Zbl 0501.46003
[7] B. P. Rynne, “The structure of Rabinowitz’ global bifurcating continua for generic quasilinear elliptic equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 32, no. 2, pp. 167-181, 1998. · Zbl 0901.35007 · doi:10.1016/S0362-546X(97)00471-9
[8] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Springer, 1986. · Zbl 0583.47050 · doi:10.1007/978-1-4612-4838-5
[9] X. L. Han and R. L. An, “A generic result for an eigenvalue problem with indefinite weight function,” Acta Mathematica Sinica, vol. 53, no. 6, pp. 1111-1118, 2010. · Zbl 1240.34051
[10] R. Ma and X. Han, “Existence of nodal solutions of a nonlinear eigenvalue problem with indefinite weight function,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 5-6, pp. 2119-2125, 2009. · Zbl 1173.34310 · doi:10.1016/j.na.2009.01.046
[11] R. Ma and X. Han, “Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function,” Applied Mathematics and Computation, vol. 215, no. 3, pp. 1077-1083, 2009. · Zbl 1188.34019 · doi:10.1016/j.amc.2009.06.042
[12] J. Xu and X. Han, “Existence of nodal solutions for Lidstone eigenvalue problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 12, pp. 3350-3356, 2007. · Zbl 1136.34016 · doi:10.1016/j.na.2006.10.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.