×

Laplacian with respect to a measure on a Hilbert space and an \(L_2\)-version of the Dirichlet problem for the Poisson equation. (English. Russian original) Zbl 1260.35021

Ukr. Math. J. 63, No. 9, 1336-1348 (2012); translation from Ukr. Mat. Zh. 63, No. 9, 1169-1178 (2011).
In this article, a new version of the Laplacian for functions defined on a Hilbert space with measure is proposed. Additionally, the author investigates uniqueness of the Poisson equation with Dirichlet boundary condition as an application.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI

References:

[1] L. Gross, ”Potential theory on Hilbert space,” J. Funct. Anal., 1, 123–181 (1967). · Zbl 0165.16403 · doi:10.1016/0022-1236(67)90030-4
[2] Yu. L. Daletskii, ”Infinite-dimensional elliptic operators and related parabolic equations,” Usp. Mat. Nauk, 22, No. 4, 3–54 (1967).
[3] P. Lévy, Problèmes Concrets d’Analyse Fonctionnelle, Gauthier-Villars, Paris (1951).
[4] A. S. Nemirovskii and G. E. Shilov, ”On the axiomatic description of the Laplace operator for functions on a Hilbert space,” Funkts. Anal. Prilozhen., 3, No. 3, 79–85 (1969). · Zbl 0204.12104 · doi:10.1007/BF01078281
[5] Yu. V. Bogdanskii, ”The Cauchy problem for parabolic equations with essentially infinite-dimensional elliptic operators,” Ukr. Mat. Zh., 29, No. 6, 781–784 (1977); English translation: Ukr. Math. J., 29, No. 6, 578–581 (1977). · Zbl 0419.35047 · doi:10.1007/BF01085964
[6] L. Accardi and O. G. Smolianov, ”On Laplacians and traces,” Conf. Sem. Univ. Bari, 250, 1–25 (1993). · Zbl 1041.46516
[7] L. Accardi, A. Barhoumi, and H. Ouerdiane, ”A quantum approach to Laplace operators,” Infin. Dimen. Anal. Quantum Probab. Relat. Top., 9, 215–248 (2006). · Zbl 1097.60065 · doi:10.1142/S0219025706002329
[8] L. Accardi, U. C. Ji, and K. Saito, ”Exotic Laplacians and associated stochastic processes,” Infin. Dimen. Anal. Quantum Probab. Relat. Top., 12, 1–19 (2009). · Zbl 1172.60019 · doi:10.1142/S0219025709003513
[9] K. Yosida, Functional Analysis, Springer, Berlin (1965). · Zbl 0126.11504
[10] S. Lang, Introduction to Differentiable Manifolds [Russian translation], Mir, Moscow (1967). · Zbl 0146.17503
[11] V. I. Bogachev, Differentiable Measures and Malliavin Calculus [in Russian], RKhD, Moscow (2008). · Zbl 0929.58015
[12] V. I. Bogachev, Foundations of Measure Theory [in Russian], Vol. 2, RKhD, Moscow (2006). · Zbl 1128.60016
[13] Yu. V. Bogdans’kyi, ”Divergence-free version of the Gauss–Ostrogradskii formula on infinite-dimensional manifolds,” Nauk. Visti NTUU ”KPI,” No. 4, 132–138 (2008).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.