Golovaty, Yuriy Schrödinger operators with \((\alpha \delta'+\beta \delta)\)-like potentials: norm resolvent convergence and solvable models. (English) Zbl 1265.34320 Methods Funct. Anal. Topol. 18, No. 3, 243-255 (2012). Let \(\Phi,\Psi\) be integrable compactly supported real functions on \(\mathbb R\). The author proves the norm resolvent convergence, as \(\varepsilon \to 0\), of a family \(S_\varepsilon\) of one-dimensional Schrödinger operators on \(\mathbb R\), of the form \[ S_\varepsilon =-\frac{d^2}{dx^2}+\alpha \varepsilon^{-2}\Phi (\varepsilon^{-1}x)+\beta \varepsilon^{-1}\Psi (\varepsilon^{-1}x). \] If the equation \(-u''+\alpha \Phi (x)u=0\) possesses a bounded solution on \(\mathbb R\), then the limit of \(S_\varepsilon\) can be interpreted as a realization of the formal Hamiltonian \[ -\frac{d^2}{dx^2}+\alpha \delta' (x)+\beta \delta (x). \] Otherwise \(S_\varepsilon\) tends to the direct sum \(S_-\oplus S_+\) of the Dirichlet half-line Schrödinger operators \(S_\pm\). Reviewer: Anatoly N. Kochubei (Kyïv) Cited in 6 Documents MSC: 34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) 81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis Keywords:one-dimensional Schrödinger operators; point interaction; \(\delta\)-potential; \(\delta'\)-potential PDF BibTeX XML Cite \textit{Y. Golovaty}, Methods Funct. Anal. Topol. 18, No. 3, 243--255 (2012; Zbl 1265.34320) Full Text: arXiv OpenURL