Ravi, O.; Ganesan, S.; Latha, R. Almost \(\tilde {g}_{\alpha }\)-closed functions and separation axioms. (English) Zbl 1265.54087 Math. Bohem. 137, No. 3, 275-291 (2012). Summary: We introduce a new class of functions called almost \(\tilde {g}_{\alpha }\)-closed and use the functions to improve several preservation theorems of normality and regularity and also their generalizations. The main result of the paper is that normality and weak normality are preserved under almost \(\tilde {g}_{\alpha }\)-closed continuous surjections. MSC: 54C10 Special maps on topological spaces (open, closed, perfect, etc.) 54C08 Weak and generalized continuity 54C05 Continuous maps 54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.) Keywords:topological space; \(\tilde {g}\)-closed set; \(\tilde {g}_{\alpha }\)-closed set; \(\alpha g\)-closed set PDF BibTeX XML Cite \textit{O. Ravi} et al., Math. Bohem. 137, No. 3, 275--291 (2012; Zbl 1265.54087) Full Text: EuDML Link