A novel method for solving KdV equation based on reproducing kernel Hilbert space method. (English) Zbl 1266.65178

Summary: We propose a reproducing kernel method for solving the Korteweg-de Vries (KdV) equation with initial condition based on the reproducing kernel theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples are also studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented method is effective.


65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
35Q53 KdV equations (Korteweg-de Vries equations)
35C10 Series solutions to PDEs
Full Text: DOI


[1] Drazin, P. G.; Johnson, R. S., Solitons: An Introduction (1989), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0661.35001
[2] Soliman, A. A., Collucation solution of the KdV equation using septic splines, International Journal of Computer Mathematics, 81, 325-331 (2004) · Zbl 1058.65113
[3] Soliman, A. A.; Ali, A. H. A.; Raslan, K. R., Numerical solution for the KdV equation based on similarity reductions, Applied Mathematical Modelling, 33, 2, 1107-1115 (2009) · Zbl 1168.65376 · doi:10.1016/j.apm.2008.01.004
[4] Zabusky, N. J.; Ames, W., A synergetic approach to problem of nonlinear dispersive wave propagation and interaction, Proceeding of Symposium Nonlinear PDEs, 223-258 (1967), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0183.18104
[5] Korteweg-de Vries, D. J.; de Vries, G., On the change in form of long waves advancing in rectangular canal and on a new type of long stationary waves, Philosophical Magazine, 39, 422-443 (1895)
[6] Gardner, C.; Marikawa, G. K., The effect of temperature of the width of a small amplitude solitary wave in a collision free plasma, Communications on Pure and Applied Mathematics, 18, 35-49 (1965)
[7] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C., Solitons and Nonlinear Wave Equations (1982), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0496.35001
[8] Goda, K., On stability of some finite difference schemes for the KdV equation, Journal of the Physical Society of Japan, 39, 229-236 (1975) · Zbl 1337.65136
[9] Vliengenthart, A. C., On finite difference methods for KdV equation, Journal of Engineering Mathematics, 5, 137-155 (1971) · Zbl 0221.76003
[10] Inc, M., Numerical simulation of KdV and mKdV equations with initial conditions by the variational iteration method, Chaos, Solitons and Fractals, 34, 4, 1075-1081 (2007) · Zbl 1142.35572 · doi:10.1016/j.chaos.2006.04.069
[11] Dağ, I.; Dereli, Y., Numerical solution of KdV equation using radial basis functions, Applied Mathematical Modelling, 32, 535-546 (2008) · Zbl 1132.65096
[12] Wazwaz, A. M., Partial Differential Equations and Solitary Waves Theory (2009), London, UK: Higher Education Press, Springer, London, UK · Zbl 1175.35001
[13] Syam, M. I., Adomian decomposition method for approximating the solution of the KdV equation, Applied Mathematics and Computation, 162, 1465-1473 (2005) · Zbl 1063.65112
[14] Aronszajn, N., Theory of reproducing kernels, Transactions of the American Mathematical Society, 68, 337-404 (1950) · Zbl 0037.20701
[15] Inc, M.; Akgül, A.; Kilicman, A., Explicit solution of telegraph equation based on reproducing Kernel method, Journal of Function Spaces and Applications, 2012 (2012) · Zbl 1259.35062 · doi:10.1155/2012/984682
[16] Geng, F.; Cui, M., Solving a nonlinear system of second order boundary value problems, Journal of Mathematical Analysis and Applications, 327, 1167-1181 (2007) · Zbl 1113.34009
[17] Yao, H.; Cui, M., A new algorithm for a class of singular boundary value problems, Applied Mathematics and Computation, 186, 1183-1191 (2007) · Zbl 1175.65085
[18] Wang, W.; Cui, M.; Han, B., A new method for solving a class of singular two-point boundary value prolems, Applied Mathematics and Computation, 206, 721-727 (2008) · Zbl 1161.65060
[19] Zhou, Y.; Lin, Y.; Cui, M., An efficient computational method for second order boundary value problemsof nonlinear diffierential equations, Applied Mathematics and Computation, 194, 357-365 (2007) · Zbl 1193.65134
[20] Lü, X.; Cui, M., Analytic solutions to a class of nonlinear infinite-delay-differential equations, Journal of Mathematical Analysis and Applications, 343, 724-732 (2008) · Zbl 1160.34059
[21] Wang, Y. L.; Chao, L., Using reproducing kernel for solving a class of partial differential equation with variable-coefficients, Applied Mathematics and Mechanics, 29, 129-137 (2008) · Zbl 1231.41019
[22] Li, F.; Cui, M., A best approximation for the solution of one-dimensional variable-coefficient Burger’s equation, Numerical Methods for Partial Differential Equations, 25, 1353-1365 (2009) · Zbl 1331.65130
[23] Zhou, S.; Cui, M., Approximate solution for a variable-coefficient semilinear heat equation with nonlocal boundary conditions, International Journal of Computer Mathematics, 86, 2248-2258 (2009) · Zbl 1182.35143
[24] Geng, F.; Cui, M., New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions, Journal of Computational and Applied Mathematics, 233, 2, 165-172 (2009) · Zbl 1205.65216 · doi:10.1016/j.cam.2009.07.007
[25] Du, J.; Cui, M., Solving the forced Duffing equations with integral boundary conditions in the reproducing kernel space, International Journal of Computer Mathematics, 87, 2088-2100 (2010) · Zbl 1213.65106
[26] Lv, X.; Cui, M., An efficient computational method for linear fifth-order two-point boundary value problems, Journal of Computational and Applied Mathematics, 234, 5, 1551-1558 (2010) · Zbl 1191.65103 · doi:10.1016/j.cam.2010.02.036
[27] Jiang, W.; Cui, M., Constructive proof for existence of nonlinear two-point boundary value problems, Applied Mathematics and Computation, 215, 5, 1937-1948 (2009) · Zbl 1187.34030 · doi:10.1016/j.amc.2009.07.044
[28] Du, J.; Cui, M., Constructive proof of existence for a class of fourth-order nonlinear BVPs, Computers and Mathematics with Applications, 59, 2, 903-911 (2010) · Zbl 1189.34038 · doi:10.1016/j.camwa.2009.10.003
[29] Cui, M.; Du, H., Representation of exact solution for the nonlinear Volterra-Fredholm integral equations, Applied Mathematics and Computation, 182, 2, 1795-1802 (2006) · Zbl 1110.45005 · doi:10.1016/j.amc.2006.06.016
[30] Wu, B. Y.; Li, X. Y., Iterative reproducing kernel method for nonlinear oscillator with discontinuity, Applied Mathematics Letters, 23, 10, 1301-1304 (2010) · Zbl 1202.34074 · doi:10.1016/j.aml.2010.06.018
[31] Jafari, H.; Firoozjaee, M. A., Homotopy analysis method for KdV equation, Surveys in Mathematics and Its Applications, 5, 89-98 (2010) · Zbl 1399.35021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.