×

On fractional thermoelasticity. (English) Zbl 1269.74055

Summary: Two general models of fractional heat conduction for non-homogeneous anisotropic elastic solids are introduced and the constitutive equations for thermoelasticity theory are obtained, uniqueness and reciprocal theorems are proved and the convolutional variational principle is established and used to prove a uniqueness theorem with no restriction on the elasticity or thermal conductivity tensors except for symmetry conditions. The dynamic coupled, Lord-Shulman, Green-Naghdi and fractional coupled thermoelasticity theories result as limit cases. The reciprocity relation in the case of quiescent initial state is found to be independent of the order of differintegration.

MSC:

74F05 Thermal effects in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.1722351 · Zbl 0071.41204
[2] DOI: 10.1115/1.3098984
[3] DOI: 10.1080/014957399280832
[4] DOI: 10.1016/0020-7683(70)90054-5 · Zbl 0209.56605
[5] DOI: 10.1080/01495737908962399
[6] DOI: 10.1177/108128603031490 · Zbl 1034.74024
[7] DOI: 10.1007/s11043-008-9068-3
[8] Ezzat, MA, Meccanica (published online) (2010)
[9] DOI: 10.1139/P10-015
[10] DOI: 10.1177/1081286507087653 · Zbl 1197.74031
[11] Eringen, AC, I. Foundations and Solids (1999)
[12] Achenbach, JD, Reciprocity in Elastodynamics (2003)
[13] DOI: 10.1115/1.1607354 · Zbl 1110.74426
[14] Chirita, S., MeReC 37 pp 271– (2010)
[15] DOI: 10.1007/BF01587687 · Zbl 0206.53401
[16] Miller, KS, An Introduction to the Fractional Integrals and Derivatives-Theory and Applications (1993)
[17] Samko, SG, Fractional Integrals and Derivatives-Theory and Applications (1993)
[18] Oldham, KB, The Fractional Calculus (1974)
[19] Gorenflo, R., Fractional calculus: integral and differential equations of fractional orders (1997)
[20] Podlubny, I., Fractional Differential Equations (1999) · Zbl 0924.34008
[21] DOI: 10.1142/3779
[22] DOI: 10.1016/j.jmaa.2004.09.043 · Zbl 1149.70320
[23] DOI: 10.1007/BF02820620
[24] DOI: 10.1122/1.549724 · Zbl 0515.76012
[25] DOI: 10.1115/1.3167616 · Zbl 0544.73052
[26] DOI: 10.1016/S0020-7225(00)00025-2
[27] DOI: 10.1177/1081286504036219 · Zbl 1066.74037
[28] Povstenko, YZ, MeReC 37 pp 436– (2010)
[29] DOI: 10.1016/j.ijsolstr.2009.09.034 · Zbl 1183.74051
[30] Youssef, HM, ATJHT 132 pp 061301– (2010)
[31] DOI: 10.1007/BF00044969 · Zbl 0784.73009
[32] Kovalenko, AD, Thermoelasticity (1969)
[33] Nowacki, W., Dynamic Problems of Thermoelasticity (1975)
[34] DOI: 10.14232/ejqtde.2008.1.29
[35] DOI: 10.1111/j.1365-246X.1967.tb02303.x
[36] Cattaneo, CR, C R Acad Sci Paris 247 pp 431– (1958)
[37] DOI: 10.1016/0022-5096(67)90024-5 · Zbl 0156.22702
[38] Hetnarski, RB, Mathematical Theory of Elasticity (2004)
[39] DOI: 10.1007/BF00248489 · Zbl 0124.40001
[40] Wheeler, LT, Arch Rational Mech Anal 31 pp 51– (1968)
[41] Fung, YC, Foundation of Solid Mechanics (1968)
[42] Gurtin, ME The linear theory of elasticity. In: Flüge S (chief ed.) and Truesdell C (ed.), Encyclopedia of Physics, vol. VIa/2. Berlin: Springer, 1972, pp. 1-295.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.