×

Homogenization in finite thermoelasticity. (English) Zbl 1270.74059

Summary: A homogenization framework is developed for the finite thermoelasticity analysis of heterogeneous media. The approach is based on the appropriate identifications of the macroscopic density, internal energy, entropy and thermal dissipation. Thermodynamical consistency that ensures standard thermoelasticity relationships among various macroscopic quantities is enforced through the explicit enforcement of the macroscopic temperature for all evaluations of temperature dependent microscale functionals. This enforcement induces a theoretical split of the accompanying micromechanical boundary value problem into two phases where a mechanical phase imposes the macroscopic deformation and temperature on a test sample while a subsequent purely thermal phase on the resulting deformed configuration imposes the macroscopic temperature gradient. In addition to consistently recovering standard scale transition criteria within this framework, a supplementary dissipation criterion is proposed based on alternative identifications for the macroscopic temperature gradient and heat flux. In order to complete the macroscale implementation of the overall homogenization methodology, methods of determining the constitutive tangents associated with the primary macroscopic variables are discussed. Aspects of the developed framework are demonstrated by numerical investigations on model microstructures.

MSC:

74F05 Thermal effects in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics
74B20 Nonlinear elasticity

Software:

VAMUCH
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aboudi, J., Micromechanical analysis of fully coupled electro-magneto-thermoelastic multiphase composites, Smart Materials and Structures, 10, 867-877 (2001)
[2] Aboudi, J., Micromechanical analysis of the fully coupled finite thermoelastic response of rubber-like matrix composites, International Journal of Solids and Structures, 39, 2587-2612 (2002) · Zbl 1037.74014
[3] Aboudi, J., Finite strain micromechanical modeling of multiphase composites, International Journal for Multiscale Computational Engineering, 6, 411-434 (2008)
[4] Aboudi, J.; Arnold, S., Micromechanical prediction of the finite deformation of thermoelastic multiphase composites, Mathematics and Mechanics of Solids, 5, 75-99 (2000) · Zbl 1024.74017
[5] Alzina, A.; Toussaint, E.; Béakou, A., Multiscale modeling of the thermoelastic behavior of braided fabric composites for cryogenic structures, International Journal of Solids and Structures, 44, 6842-6858 (2007) · Zbl 1166.74328
[6] Bakhvalov, N.; Panasenko, G., Homogenisation: Averaging Processes in Periodic Media (1989), Kluwer · Zbl 0692.73012
[7] Balzani, D., 2006. Polyconvex anisotropic energies and modeling of damage applied to arterial walls. Ph.D. Thesis, Universität Duisburg-Essen (Institute für Mechanik), Essen, Germany.; Balzani, D., 2006. Polyconvex anisotropic energies and modeling of damage applied to arterial walls. Ph.D. Thesis, Universität Duisburg-Essen (Institute für Mechanik), Essen, Germany.
[8] Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland · Zbl 0411.60078
[9] Bertoldi, K.; Boyce, M. C., Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations, Physical Review B, 78, 184107 (2008)
[10] Boley, B. A.; Weiner, J. H., Theory of Thermal Stresses (1997), Dover · Zbl 1234.74001
[11] Braides, A., Homogenization of some almost periodic coercive functional, Rendiconti Accademia Nazionale delle Scienze detta dei XL. Serie V. Memorie di Matematica, 9, 313-322 (1985) · Zbl 0582.49014
[12] Braides, A.; Defranceschi, A., Homogenization of Multiple Integrals (1999), Oxford
[13] Brun, M.; Lopez-Pamies, O.; Castane˜da, P. P., Homogenization estimates for fiber-reinforced elastomers with periodic microstructures, International Journal of Solids and Structures, 44, 5953-5979 (2007) · Zbl 1186.74095
[14] Celigoj, C. C., Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle, International Journal of Numerical Methods in Engineering, 71, 102-126 (2007) · Zbl 1194.74051
[15] Chadwick, P., Thermo-mechanics of rubberlike materials, Philosophical Transactions of the Royal Society of London, Series A, 276, 371-403 (1973) · Zbl 0287.73005
[16] Chadwick, P.; Creasy, C. F.M., Modified entropic elasticity of rubberlike materials, Journal of the Mechanics and Physics of Solids, 32, 5, 337-357 (1984) · Zbl 0575.73010
[17] Cioranescu, D.; Donato, P., An Introduction to Homogenization (1998), Oxford
[18] Corcolle, R.; Daniel, L.; Bouillault, F., Generic formalism for homogenization of coupled behavior: application to magnetoelectroelastic behavior, Physical Review B, 78, 214110 (2008)
[19] Ehlers, W.; Ramm, E.; Diebels, S.; D’Addetta, G. A., From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses, International Journal of Solids and Structures, 40, 6681-6702 (2003) · Zbl 1053.74002
[20] Fan, R.; Fish, J., Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading, International Journal of Numerical Methods in Engineering, 76, 1044-1064 (2008) · Zbl 1195.74142
[21] Fish, J.; Belsky, V., Multi-grid method for periodic heterogeneous media (part 2): multiscale modeling and quality control in multidimensional case, Computer Methods in Applied Mechanics and Engineering, 126, 17-38 (1995) · Zbl 1067.74573
[22] Forest, S.; Barbe, F.; Cailletaud, G., Cosserat modelling of size effects in the mechanical behavior of polycrystals and multi-phase materials, International Journal of Solids and Structures, 37, 7105-7126 (2000) · Zbl 0998.74019
[23] Forest, S.; Pradel, F.; Sab, K., Asymptotic analysis of heterogeneous Cosserat media, International Journal of Solids and Structures, 38, 4585-4608 (2001) · Zbl 1033.74038
[24] Francfort, G. A., Homogenization and linear thermoelasticity, SIAM Journal of Mathematical Analysis, 14, 4, 696-798 (1983) · Zbl 0525.73002
[25] Geymonat, G.; Müller, S.; Triantafyllidis, N., Homogenization of nonlinearly elastic materials, microscopic bifurcations and macroscopic loss of rank-one convexity, Archive for Rational Mechanics and Analysis, 122, 231-290 (1993) · Zbl 0801.73008
[26] Ghosh, S.; Bai, J.; Raghavan, P., Concurrent multi-level model for damage evolution in microstructurally debonding composites, Mechanics of Materials, 39, 241-266 (2007)
[27] Ghosh, S.; Liu, Y., Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials, International Journal of Solids and Structures, 38, 1361-1398 (1995) · Zbl 0823.73066
[28] Gitman, I. M.; Askes, H.; Sluys, L. J., Representative volume: existence and size determination, Engineering Fracture Mechanics, 74, 2518-2534 (2007)
[29] Guimard, J.-M.; Allix, O.; Pechnik, N.; Thevenet, P., Energetic analysis of fragmentation mechanisms and dynamic delamination modelling in CFRP composites, Computers and Structures, 87, 1022-1032 (2009)
[30] Haupt, P., Continuum Mechanics and Theory of Materials (2002), Springer
[31] Hazanov, S.; Huet, C., Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, Journal of the Mechanics and Physics of Solids, 42, 12, 1995-2011 (1994) · Zbl 0821.73005
[32] Hill, R., On constitutive macro-variables for heterogeneous solids at finite strain, Proceedings of the Royal Society of London A, 326, 1565, 131-147 (1972) · Zbl 0229.73004
[33] Hill, R.; Rice, J. R., Elastic potentials and the structure of inelastic constitutive laws, SIAM Journal on Applied Mathematics, 25, 3, 448-461 (1973) · Zbl 0275.73028
[34] Holzapfel, G. A., Nonlinear Solid Mechanics: a Continuum Approach for Engineering (2001), Wiley: Wiley Chichester
[35] Holzapfel, G. A.; Simo, J. C., Entropy elasticity of isotropic rubber-like solids at finite strains, Computer Methods in Applied Mechanics and Engineering, 132, 17-44 (1996) · Zbl 0890.73022
[36] Kerfriden, P.; Allix, O.; Gosselet, P., A three-scale domain decomposition method for the 3D analysis of debonding laminates, Computational Mechanics, 44, 343-362 (2009) · Zbl 1166.74039
[37] Khisaeva, Z. F.; Ostoja-Starzewski, M., Scale effects in infinitesimal and finite thermoelasticity of random composites, Journal of Thermal Stresses, 30, 6, 587-603 (2007)
[38] Kouznetsova, V.; Brekelmans, W. A.M.; Baaijens, F. P.T., An approach to micro-macro modeling of heterogeneous materials, Computational Mechanics, 27, 37-48 (2001) · Zbl 1005.74018
[39] Kouznetsova, V. G.; Geers, M. G.D.; Brekelmans, W. A.M., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Computer Methods in Applied Mechanics and Engineering, 193, 5525-5550 (2004) · Zbl 1112.74469
[40] Ladevèze, P.; Nouy, A., On a multiscale computational strategy with time and space homogenization for structural mechanics, Computer Methods in Applied Mechanics and Engineering, 192, 3061-3087 (2003) · Zbl 1054.74701
[41] Lakkad, S. C.; Miatt, B. B.; Parsons, B., Elastic and thermoelastic properties of a statistically isotropic heterogeneous medium, Journal of Physics D: Applied Physics, 6, 1566-1584 (1973)
[42] Larsson, R.; Diebels, S., A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics, International Journal of Numerical Methods in Engineering, 69, 2485-2512 (2007) · Zbl 1194.74282
[43] Laschet, G., Homogenization of the thermal properties of transpiration cooled multi-layer plates, Computer Methods in Applied Mechanics and Engineering, 191, 4535-4554 (2002) · Zbl 1034.74043
[44] L’Hostis, G.; Devries, F., Characterization of the thermoelastic behavior of syntactic foams, Composites Part B, 29B, 351-361 (1998)
[45] Lillbacka, R.; Larsson, F.; Runesson, K., On the implementation of plane stress in computational multiscale modeling, International Journal for Multiscale Computational Engineering, 4, 5-6, 771-790 (2006)
[46] Liu, I.-S., Continuum Mechanics (2002), Springer: Springer Berlin, Heidelberg · Zbl 1058.74004
[47] Maugin, G. A., The Thermomechanics of Plasticity and Fracture (1992), Cambridge University Press · Zbl 0753.73001
[48] Maugin, G. A., The Thermomechanics of Nonlinear Irreversible Behaviors (1999), World Scientific · Zbl 0945.80001
[49] McVeigh, C.; Liu, W. K., Linking microstructure and properties through a predictive multiresolution continuum, Computer Methods in Applied Mechanics and Engineering, 197, 41-42, 3268-3290 (2008) · Zbl 1159.74311
[50] Meier, H. A.; Steinmann, P.; Kuhl, E., Towards multiscale computation of confined granular media: contact forces, stresses and tangent operators, Technische Mechanik, 28, 32-42 (2008)
[51] Michel, J. C.; Lopez-Pamies, O.; Casta neda, P. P.; Triantafyllidis, N., Microscopic and macroscopic instabilities in finitely strained porous elastomers, Journal of the Mechanics and Physics of Solids, 55, 900-938 (2007) · Zbl 1170.74018
[52] Miehe, C., Entropic thermoelasticity at finite strains: aspects of the formulation and numerical implementation, Computer Methods in Applied Mechanics and Engineering, 120, 243-269 (1995) · Zbl 0851.73012
[53] Miehe, C.; Bayreuther, C. G., On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers, International Journal of Numerical Methods in Engineering, 71, 1135-1180 (2007) · Zbl 1194.74443
[54] Miehe, C.; Keck, J., Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers: experiments, modelling and algorithmic implementation, Journal of the Mechanics and Physics of Solids, 48, 323-365 (2000) · Zbl 0998.74014
[55] Miehe, C.; Koch, A., Computational micro-to-macro transitions of discretized microstructures undergoing small strains, Archive of Applied Mechanics, 72, 300-317 (2002) · Zbl 1032.74010
[56] Miehe, C.; Schotte, J.; Lambrecht, M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals, Journal of the Mechanics and Physics of Solids, 50, 2123-2167 (2002) · Zbl 1151.74403
[57] Miehe, C.; Schröder, J.; Becker, M., Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction, Computer Methods in Applied Mechanics and Engineering, 191, 4971-5005 (2002) · Zbl 1099.74517
[58] Miehe, C.; Schröder, J.; Schotte, J., Computational homogenization analysis in finite plasticity: simulation of texture development in polycrystalline materials, Computer Methods in Applied Mechanics and Engineering, 171, 387-418 (1999) · Zbl 0982.74068
[59] Molinari, A.; Ortiz, M., Global viscoelastic behavior of heterogeneous thermoelastic materials, International Journal of Solids Structures, 23, 1285-1300 (1987) · Zbl 0618.73040
[60] Moraleda, J.; Segurado, J.; LLorca, J., Finite deformation of incompressible fiber-reinforced elastomers: a computational micromechanics approach, Journal of the Mechanics and Physics of Solids, 57, 1596-1613 (2009) · Zbl 1371.74023
[61] Müller, S., Homogenization of nonconvex integral functionals and cellular elastic materials, Archive for Rational Mechanics and Analysis, 99, 189-212 (1987) · Zbl 0629.73009
[62] Nemat-Nasser, S.; Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials (1999), North-Holland: North-Holland Amsterdam · Zbl 0924.73006
[63] Nezamabadi, S.; Yvonnet, J.; Zahrouni, H.; Potier-Ferry, M., A multilevel computational strategy for handling microscopic and macroscopic instabilities, Computer Methods in Applied Mechanics and Engineering, 198, 2099-2110 (2009) · Zbl 1227.74026
[64] Ngo, N. D.; Tamma, K. K., Computational developments for simulation based design: multi-scale physics and flow/thermal/cure/stress modeling, analysis, and validation for advanced manufacturing of composites with complex microstructures, Archives of Computational Methods in Engineering, 10, 1-2, 3-206 (2003) · Zbl 1115.74316
[65] Ogden, R. W., On the overall moduli of non-linear elastic composite materials, Journal of the Mechanics and Physics of Solids, 22, 541-553 (1974) · Zbl 0293.73003
[66] Ohno, N.; Okumura, D.; Noguchi, H., Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation, Journal of the Mechanics and Physics of Solids, 50, 1125-1153 (2002) · Zbl 1070.74012
[67] Orlik, J., 2004. Homogenization for contact problems with periodically rough surfaces. Technical Report, Fraunhofer Institut Techno- und Wirtschaftsmathematik (available online via the institute website).; Orlik, J., 2004. Homogenization for contact problems with periodically rough surfaces. Technical Report, Fraunhofer Institut Techno- und Wirtschaftsmathematik (available online via the institute website).
[68] Ostoja-Starzewski, M., Material spatial randomness: from statistical to representative volume element, Probabilistic Engineering Mechanics, 21, 112-132 (2006)
[69] Özdemir, I.; Brekelmans, W.; Geers, M., Computational homogenization for heat conduction in heterogeneous solids, International Journal of Numerical Methods in Engineering, 73, 185-204 (2008) · Zbl 1159.74029
[70] Özdemir, I.; Brekelmans, W.; Geers, M., \(FE^2\) computational homogenization for the thermo-mechanical analysis of heterogeneous solids, Computer Methods in Applied Mechanics and Engineering, 198, 602-613 (2008) · Zbl 1228.74065
[71] Pavliotis, G. A.; Stuart, A. M., Multiscale Methods: Averaging and Homogenization (2008), Springer-Verlag · Zbl 1160.35006
[72] Perkowski, Z., Change of thermal conductivity of concrete caused by brittle damage evolution, Bauphysik, 30, 6, 434-437 (2008)
[73] Romkes, A.; Oden, J. T.; Vemaganti, K., Multi-scale goal-oriented adaptive modeling of random heterogeneous materials, Mechanics of Materials, 38, 859-872 (2006)
[74] Rosen, B. W.; Hashin, Z., Effective thermal expansion coefficients and specific heats of composite materials, International Journal of Engineering Science, 8, 157-173 (1970)
[75] Saiki, I.; Terada, K.; Ikeda, K.; Hori, M., Appropriate number of unit cells in a representative volume element for micro-structural bifurcation encountered in a multi-scale modeling, Computer Methods in Applied Mechanics and Engineering, 191, 2561-2585 (2002) · Zbl 1053.74014
[76] Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory (1980), Springer-Verlag · Zbl 0432.70002
[77] Simo, J. C., Numerical analysis and simulation of plasticity, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, vol. VI (1998), Elsevier) · Zbl 0930.74001
[78] Smit, R. J.M.; Brekelmans, W. A.M.; Meijer, H. E.H., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling, Computer Methods in Applied Mechanics and Engineering, 155, 181-192 (1998) · Zbl 0967.74069
[79] Suquet, P. M., Elements of homogenization for inelastic solids mechanics, (Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques in Composite Media, vol. 272. CISM Courses and Lectures (1987), Springer Verlag), 193-278
[80] Takano, N.; Ohnishi, Y.; Zako, M.; Nishiyabu, K., The formulation of homogenization method applied to large deformation problem for composite materials, International Journal of Solids and Structures, 37, 6517-6535 (2000) · Zbl 0969.74053
[81] Temizer, İ.; Wriggers, P., A multiscale contact homogenization technique for the modeling of third bodies in the contact interface, Computer Methods in Applied Mechanics and Engineering, 198, 377-396 (2008) · Zbl 1228.74056
[82] Temizer, İ.; Wriggers, P., On a mass conservation criterion in homogenization, Journal of Applied Mechanics Transactions of ASME, 75, 054503 (2008)
[83] Temizer, İ.; Wriggers, P., On the computation of the macroscopic tangent for multiscale volumetric homogenization problems, Computer Methods in Applied Mechanics and Engineering, 198, 3-4, 495-510 (2008) · Zbl 1228.74066
[84] Temizer, İ., Wriggers, P., 2010a. An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures. Computer Methods in Applied Mechanics and Engineering, in press, doi:10.1016/j.cma.2010.06.013; Temizer, İ., Wriggers, P., 2010a. An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures. Computer Methods in Applied Mechanics and Engineering, in press, doi:10.1016/j.cma.2010.06.013 · Zbl 1230.74157
[85] Temizer, İ., Wriggers, P., 2010b. Inelastic analysis of granular interfaces via computational contact homogenization. International Journal of Numerical Methods in Engineering, in press, doi:10.1002/nme.2921; Temizer, İ., Wriggers, P., 2010b. Inelastic analysis of granular interfaces via computational contact homogenization. International Journal of Numerical Methods in Engineering, in press, doi:10.1002/nme.2921 · Zbl 1202.74035
[86] Temizer, İ.; Wriggers, P., Thermal contact conductance characterization via computational contact homogenization: a finite deformation theory framework, International Journal of Numerical Methods in Engineering, 83, 27-58 (2010) · Zbl 1193.74106
[87] Temizer, İ.; Zohdi, T. I., A numerical method for homogenization in non-linear elasticity, Computational Mechanics, 40, 2, 281-298 (2007) · Zbl 1163.74041
[88] Terada, K.; Kurumatani, M.; Ushida, T.; Kikuchi, N., A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer, Computational Mechanics, 46, 269-285 (2010) · Zbl 1398.74076
[89] Terada, K.; Saiki, I.; Matsui, K.; Yamakawa, Y., Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain, Computer Methods in Applied Mechanics and Engineering, 192, 3531-3563 (2003) · Zbl 1054.74038
[90] Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties (2002), Springer: Springer Berlin, Heidelberg, New York · Zbl 0988.74001
[91] Triantafyllidis, N.; Bardenhagen, S., The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models, Journal of the Mechanics and Physics of Solids, 44, 11, 1891-1928 (1996) · Zbl 1054.74585
[92] Wellmann, C.; Lillie, C.; Wriggers, P., Comparison of the macroscopic behavior of granular materials modeled by different constitutive equations on the microscale, Finite Elements in Analysis and Design, 44, 259-271 (2008)
[93] Wriggers, P.; Reinelt, J., Multi-scale approach for frictional contact of elastomers on rough rigid surfaces, Computer Methods in Applied Mechanics and Engineering, 198, 1996-2008 (2009) · Zbl 1227.74042
[94] Yu, Q.; Fish, J., Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem, International Journal of Solids and Structures, 39, 6429-6452 (2002) · Zbl 1032.74627
[95] Yu, W.; Tang, T., A variational asymptotic micromechanics model for predicting thermoelastic properties of heterogeneous materials, International Journal of Solids and Structures, 44, 7510-7525 (2007) · Zbl 1166.74411
[96] Zohdi, T. I., On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure, International Journal of Numerical Methods in Engineering, 76, 1250-1279 (2008) · Zbl 1195.74143
[97] Zohdi, T. I.; Wriggers, P., Introduction to Computational Micromechanics (2005), Springer: Springer Berlin, Heidelberg, New York · Zbl 1085.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.