Extracting black hole physics from the lattice. (English) Zbl 1272.83046

Summary: We perform lattice simulations of \(N\) D0-branes at finite temperature in the decoupling limit, namely 16 supercharge SU(\(N\)) Yang-Mills quantum mechanics in the ’t Hooft limit. At low temperature this theory is conjectured to be dual to certain supergravity black holes. We emphasize that the existence of a non-compact moduli space renders the partition function of the quantum mechanical theory divergent, and we perform one loop calculations that demonstrate this explicitly. In consequence we use a scalar mass term to regulate this divergence and argue that the dual black hole thermodynamics may be recovered in the appropriate large \(N\) limit as the regulator is removed. We report on simulations for \(N\) up to 5 including the Pfaffian phase, and \(N\) up to 12 in the phase quenched approximation. Interestingly, in the former case, where we may calculate this potentially difficult phase, we find that it appears to play little role dynamically over the temperature range tested, which is certainly encouraging for future simulations of this theory.


83C57 Black holes
83E50 Supergravity
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T25 Quantum field theory on lattices
81T13 Yang-Mills and other gauge theories in quantum field theory
82B30 Statistical thermodynamics
80A10 Classical and relativistic thermodynamics
Full Text: DOI arXiv


[1] Z. Bern, L.J. Dixon and R. Roiban, Is N = 8 Supergravity Ultraviolet Finite?, Phys. Lett.B 644 (2007) 265 [hep-th/0611086] [SPIRES]. · Zbl 1248.83136
[2] P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev.D 79 (2009) 084008 [arXiv:0901.3775] [SPIRES].
[3] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [SPIRES]. · Zbl 0914.53047
[4] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev.D 58 (1998) 046004 [hep-th/9802042] [SPIRES].
[5] A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [SPIRES]. · Zbl 1376.83026
[6] A. Strominger, Black hole entropy from near-horizon microstates, JHEP02 (1998) 009 [hep-th/9712251] [SPIRES]. · Zbl 0955.83010
[7] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys.275 (2007) 209 [hep-th/0510251] [SPIRES]. · Zbl 1122.81070
[8] D.N. Kabat and G. Lifschytz, Approximations for strongly-coupled supersymmetric quantum mechanics, Nucl. Phys.B 571 (2000) 419 [hep-th/9910001] [SPIRES]. · Zbl 1028.81507
[9] D.N. Kabat, G. Lifschytz and D.A. Lowe, Black hole entropy from non-perturbative gauge theory, Phys. Rev.D 64 (2001) 124015 [hep-th/0105171] [SPIRES].
[10] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [SPIRES].
[11] S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept.484 (2009) 71 [arXiv:0903.4881] [SPIRES].
[12] S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev.D 78 (2008) 041502 [arXiv:0803.4273] [SPIRES].
[13] K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett.100 (2008) 021601 [arXiv:0707.4454] [SPIRES].
[14] M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 181602 [arXiv:0811.2081] [SPIRES].
[15] M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 191602 [arXiv:0811.3102] [SPIRES].
[16] N. Kawahara, J. Nishimura and S. Takeuchi, High temperature expansion in supersymmetric matrix quantum mechanics, JHEP12 (2007) 103 [arXiv:0710.2188] [SPIRES]. · Zbl 1246.81370
[17] M. Campostrini and J. Wosiek, High precision study of the structure of D = 4 supersymmetric Yang-Mills quantum mechanics, Nucl. Phys.B 703 (2004) 454 [hep-th/0407021] [SPIRES]. · Zbl 1198.81172
[18] J.R. Hiller, S.S. Pinsky, N. Salwen and U. Trittmann, Direct evidence for the Maldacena conjecture for N = (8,8) super Yang-Mills theory in 1+1 dimensions, Phys. Lett.B 624 (2005) 105 [hep-th/0506225] [SPIRES]. · Zbl 1247.81472
[19] J.R. Hiller, O. Lunin, S. Pinsky and U. Trittmann, Towards a SDLCQ test of the Maldacena conjecture, Phys. Lett.B 482 (2000) 409 [hep-th/0003249] [SPIRES]. · Zbl 1028.81515
[20] A.V. Smilga, Comments on thermodynamics of supersymmetric matrix models, Nucl. Phys.B 818 (2009) 101 [arXiv:0812.4753] [SPIRES]. · Zbl 1194.81218
[21] G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev.D 55 (1997) 6189 [hep-th/9612146] [SPIRES].
[22] S. Paban, S. Sethi and M. Stern, Constraints from extended supersymmetry in quantum mechanics, Nucl. Phys.B 534 (1998) 137 [hep-th/9805018] [SPIRES]. · Zbl 1078.81532
[23] B. de Wit, M. Lüscher and H. Nicolai, The Supermembrane Is Unstable, Nucl. Phys.B 320 (1989) 135 [SPIRES].
[24] J. Ambjørn, Y.M. Makeenko and G.W. Semenoff, Thermodynamics of D0-branes in matrix theory, Phys. Lett.B 445 (1999) 307 [hep-th/9810170] [SPIRES]. · Zbl 1058.81625
[25] H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Space-time structures from IIB matrix model, Prog. Theor. Phys.99 (1998) 713 [hep-th/9802085] [SPIRES].
[26] T. Hotta, J. Nishimura and A. Tsuchiya, Dynamical aspects of large-N reduced models, Nucl. Phys.B 545 (1999) 543 [hep-th/9811220] [SPIRES].
[27] W. Krauth and M. Staudacher, Eigenvalue distributions in Yang-Mills integrals, Phys. Lett.B 453 (1999) 253 [hep-th/9902113] [SPIRES]. · Zbl 1058.81731
[28] O. Aharony et al., The phase structure of low dimensional large-N gauge theories on tori, JHEP01 (2006) 140 [hep-th/0508077] [SPIRES].
[29] P. Austing and J.F. Wheater, Convergent Yang-Mills matrix theories, JHEP04 (2001) 019 [hep-th/0103159] [SPIRES].
[30] P. Austing, Yang-Mills matrix theory, hep-th/0108128 [SPIRES].
[31] M.R. Douglas, D.N. Kabat, P. Pouliot and S.H. Shenker, D-branes and short distances in string theory, Nucl. Phys.B 485 (1997) 85 [hep-th/9608024] [SPIRES]. · Zbl 0925.81232
[32] S. Catterall and T. Wiseman, Towards lattice simulation of the gauge theory duals to black holes and hot strings, JHEP12 (2007) 104 [arXiv:0706.3518] [SPIRES]. · Zbl 1246.81112
[33] I. Kanamori and H. Suzuki, Restoration of supersymmetry on the lattice: Two- dimensional \(\mathcal{N} = \left( {2,2} \right)\) supersymmetric Yang-Mills theory, Nucl. Phys.B 811 (2009) 420 [arXiv:0809.2856] [SPIRES]. · Zbl 1194.81233
[34] I. Kanamori and H. Suzuki, Some physics of the two-dimensional \(\mathcal{N} = \left( {2,2} \right)\) supersymmetric Yang-Mills theory: Lattice Monte Carlo study, Phys. Lett.B 672 (2009) 307 [arXiv:0811.2851] [SPIRES].
[35] I. Kanamori, Vacuum energy of two-dimensional N=(2,2) super Yang-Mills theory, Phys. Rev.D 79 (2009) 115015 [arXiv:0902.2876] [SPIRES].
[36] M. Hanada and I. Kanamori, Lattice study of two-dimensional N=(2,2) super Yang-Mills at large-N, Phys. Rev.D 80 (2009) 065014 [arXiv:0907.4966] [SPIRES].
[37] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in at space and pp waves from N = 4 super Yang-Mills, JHEP04 (2002) 013 [hep-th/0202021] [SPIRES].
[38] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [SPIRES].
[39] M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav.27 (2010) 035002 [arXiv:0905.1822] [SPIRES]. · Zbl 1186.83083
[40] W. Krauth, H. Nicolai and M. Staudacher, Monte Carlo approach to M-theory, Phys. Lett.B 431 (1998) 31 [hep-th/9803117] [SPIRES].
[41] J. Giedt, R. Koniuk, E. Poppitz and T. Yavin, Less naive about supersymmetric lattice quantum mechanics, JHEP12 (2004) 033 [hep-lat/0410041] [SPIRES].
[42] M.A. Clark, A.D. Kennedy and Z. Sroczynski, Exact 2+1 flavour RHMC simulations, Nucl. Phys. Proc. Suppl.140 (2005) 835 [hep-lat/0409133] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.