Lü, Guangshi; Wang, Yonghui Note on the number of integral ideals in Galois extensions. (English) Zbl 1273.11160 Sci. China, Math. 53, No. 9, 2417-2424 (2010). Let \(K\) be a number field and \(a_k\) be the number of integral ideals in \(K\) with norm \(k\). Landau studied the sum \(\sum_{k \leq x} a_k\) when \(K\) has degree \(\geq 2\). Several other authors have studied this problem. The best known results for number fields \(K\) of degree \(\geq 3\) is by W. G. Nowak [Math. Nachr. 161, 59–74 (1993; Zbl 0803.11061)]. In this paper, the authors study the sum \(\sum_{k \leq x} a_k^l\) for any integer \(l \geq 2\) and when \(K\) is Galois of degree \(n \geq 2\). Their result improves an earlier result of K. Chandrasekharan and A. Good [Monatsh. Math. 95, 99–109 (1983; Zbl 0498.12009)]. Furthermore, if \(K\) is abelian, the authors obtain a better bound. The authors also study the number of solutions of polynomial congruences as an application of their results. Reviewer: Sanoli Gun (Chennai) Cited in 6 Documents MSC: 11R42 Zeta functions and \(L\)-functions of number fields 11R45 Density theorems Keywords:Dedekind zeta-function; power sum of integral ideals; polynomial congruence Citations:Zbl 0803.11061; Zbl 0498.12009 PDF BibTeX XML Cite \textit{G. Lü} and \textit{Y. Wang}, Sci. China, Math. 53, No. 9, 2417--2424 (2010; Zbl 1273.11160) Full Text: DOI OpenURL References: [1] Chandraseknaran K, Good A. On the number of integral ideals in Galois extensions. Monatsh Math, 1983, 95: 99–109 · Zbl 0498.12009 [2] Chandraseknaran K, Narasimhan R. The approximate functional equation for a class of zeta-functions. Math Ann, 1963, 152: 30–64 · Zbl 0116.27001 [3] Erdös P. On the sum {\(\Sigma\)} k=1 {\(\alpha\)} d(f(k)). J London Math Soc, 1952, 27: 7–15 · Zbl 0046.04103 [4] Heath-Brown D R. The twelfth power moment of the Rimeann zeta-function. Q J Math, 1978, 29: 443–462 · Zbl 0394.10020 [5] Heath-Brown D R. The growth rate of the Dedekind zeta-function on the critical line. Acta Arith, 1988, 49: 323–339 · Zbl 0583.12011 [6] Huxley M N, Watt N. The number of ideals in a quadratic field II. Israel J Math Part A, 2000, 120: 125–153 · Zbl 0977.11049 [7] Kanemitsu S, Sankaranarayanan A, Tanigawa Y. A mean value theorem for Dirichlet series and a general divisor problem. Monatsh Math, 2002, 136: 17–34 · Zbl 1022.11047 [8] Kim H. Functoriality and number of solutions of congruences. Acta Arith, 2007, 128: 235–242 · Zbl 1135.11051 [9] Fomenko O M. The mean number of solutions of certain congruences. J Math Sci, 2001, 105: 2257–2268 · Zbl 0986.11067 [10] Ivić A. The Riemann Zeta-Function. New York: John Wiley & Sons, 1985 · Zbl 0556.10026 [11] Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloquium Publ 53. Providence, RI: Amer Math Soc, 2004 · Zbl 1059.11001 [12] Landau E. Einführung in die Elementare umd Analytische Theorie der Algebraischen Zahlen und der Ideals. New York: Chelsea, 1949 [13] Meurman T. The mean twelfth power of Dirichlet L-functions on the critical line. Ann Acad Sci Fenn Math Diss, 1984, 52: 1–44 · Zbl 0538.10034 [14] Müller W. On the distribution of ideals in cubic number fields. Monatsh Math, 1988, 106: 211–219 · Zbl 0669.10068 [15] Nowak W G. On the distribution of integral ideals in algebraic number theory fields. Math Nachr, 1993, 161: 59–74 · Zbl 0803.11061 [16] Pan C D, Pan C B. Fundamentals of Analytic Number Theory (in Chinese). Beijing: Science Press, 1991 · Zbl 0738.55007 [17] Ramanujan S. Some formulae in the analytic theory of numbers. Messenger Math, 1915, 45: 81–84 · JFM 45.1250.01 [18] Sankaranarayanan A. Higher moments of certain L-functions on the critical line. Liet Mat Rink, 2007, 47: 341–380 · Zbl 1291.11115 [19] Swinnerton-Dyer H P F. A Brief Guide to Algebraic Number Theory. London Mathematical Society Student Texts 50. Cambridge: Cambridge University Press, 2001 · Zbl 0963.11001 [20] Wilson B M. Proofs of some formulae enunciated by Ramanujan. Proc London Math Soc, 1922, 21: 235–255 · JFM 48.1216.02 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.