Liu, Zhixin An improvement on Waring-Goldbach problem for unlike powers. (English) Zbl 1274.11154 Acta Math. Hung. 130, No. 1-2, 118-139 (2011). Summary: Let \(p_i\) be prime numbers. In this paper, it is proved that for any integer \(k\geqq 5\), with at most \(O\big(N^{1-\frac{1}{3k\times 2^{k-2}}+\varepsilon}\big)\) exceptions, all positive even integers up to \(N\) can be expressed in the form \(p^2_2+ p^3_3+p^5_5+p^k_k\). This improves the result \(O\big(\frac{N}{\log^c N}\big)\) for some \(c > 0\) due to M.-G. Lu and Z. Shan [Kexue Tongbao, Foreign. Lang. Ed. 27, 246–250 (1982; Zbl 0497.10037); J. China Univ. Sci. Tech., Suppl. I, 1–8 (Chinese)(1982)], and it is a generalization for a series of results of X.-M. Ren and K.-M. Tsang [Acta Math. Sin., Engl. Ser. 23, No. 2, 265–280 (2007; Zbl 1128.11043), Acta Math. Sin., Chin. Ser. 50, No. 1, 175–182 (2007; Zbl 1121.11312)], and C. Bauer [Rocky Mt. J. Math. 38, No. 4, 1073–1090 (2008; Zbl 1232.11101), a.o.] for the problem in the form \(p^2_2 + p^3_3+p^4_4 +p^5_5\). This method can also be used for some other similar forms. Cited in 1 Document MSC: 11P32 Goldbach-type theorems; other additive questions involving primes 11P05 Waring’s problem and variants 11P55 Applications of the Hardy-Littlewood method Keywords:Waring-Goldbach problem; circle method; exceptional set Citations:Zbl 0497.10037; Zbl 1128.11043; Zbl 1121.11312; Zbl 1232.11101 PDF BibTeX XML Cite \textit{Z. Liu}, Acta Math. Hung. 130, No. 1--2, 118--139 (2011; Zbl 1274.11154) Full Text: DOI OpenURL References: [1] C. Bauer, On a problem of the Goldbach–Waring type, Acta Math. Sinica, New Series, 14 (1998), 223–234. · Zbl 0901.11030 [2] C. Bauer, An improvement on a theorem of the Goldbach–Waring type, Rocky Mountain J. Math., 31 (2001), 1151–1170. · Zbl 1035.11047 [3] C. Bauer, A remark on a theorem of the Goldbach Waring type, Studia Sci. Math. Hungar., 41 (2004), 309–324. · Zbl 1064.11065 [4] C. Bauer, A Goldbach–Waring problem for unequal powers of primes, Rocky Mountain J. Math., 38 (2008), 1073–1090. · Zbl 1232.11101 [5] S. Choi and A. Kumchev, Mean values of Drichlet polynomials and application to linear equations with prime variables, Acta Arith., 123 (2006), 125–142. · Zbl 1182.11048 [6] R. Cook, On sums of powers of integers, J. Number Theory, 4 (1979), 516–528. · Zbl 0408.10034 [7] P. X. Gallagher, A large sieve density estimate near {\(\sigma\)}=1, Invent. Math., 11 (1970), 329–339. · Zbl 0219.10048 [8] L. K. Hua, Additive Theory of Prime Numbers, Science Press (Beijing, 1957); English Version, Amer. Math. Soc. (Rhode Island, 1965). [9] N. M. Huxley, Large values of Dirichlet polynomials III, Acta Arith., 26 (1975), 435–444. · Zbl 0268.10026 [10] J. Y. Liu and M. C. Liu, The exceptional set in the four prime squares problem, Illinois J. Math., 44 (2000), pp. 272–293. · Zbl 0942.11044 [11] A. Kumchev, On Weyl sums over primes and almost primes, Michigan Math. J., 54 (2006), 243–268. · Zbl 1137.11054 [12] M. G. Lu and Z. Shan, A problem of Waring–Goldbach type, J. China Univ. Sci. Tech., Suppl. I (1982), 1–8 (in Chinese). · Zbl 0497.10037 [13] K. Prachar, Über ein Problem vom Waring–Goldbach’schen Typ, Monatsh. Math., 57 (1953), 66–74. · Zbl 0050.04003 [14] K. Prachar, Primzahlverteilung, Springer Verlag (Berlin, 1978). [15] X. M. Ren and Kai-Man Tsang, Waring–Goldbach problem for unlike powers, Acta Math. Sinica, English Series (2), 23 (2007), 265–280. · Zbl 1128.11043 [16] X. M. Ren and Kai-Man Tsang, Waring–Goldbach problem for unlike powers (II), Acta Math. Sinica (Chinese Series), 50 (2007), 175–182. · Zbl 1121.11312 [17] K. F. Roth, A problem in additive number theory, Proc. London Math. Soc., 53 (1951), 381–395. · Zbl 0044.03601 [18] K. Thanigasalam, On certain sequences of integers, Trans. Amer. Math. Soc., 200 (1974), 199–205. · Zbl 0292.10043 [19] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd edn., Clarendon Press (Oxford, 1986). · Zbl 0601.10026 [20] I. M. Vinogradov, Elements of Number Theory, Dover Publications (New York, 1954). · Zbl 0057.28201 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.