Brodsky, Boris; Darkhovsky, Boris Minimax methods for multihypothesis sequential testing and change-point detection problems. (English) Zbl 1274.62512 Sequential Anal. 27, No. 2, 141-173 (2008). Summary: A unified methodological approach to sequential testing of many composite hypotheses and multi-decision change-point detection for composite alternatives is proposed. New performance measures for methods of hypotheses testing and change-point detection are introduced. Theoretical lower bounds for these performance measures are proved that do not depend on methods of sequential testing and detection. Minimax tests are proposed for which these lower bounds are attained asympototically as decision thresholds tend to infinity. Results of Monte Carlo experiments are given. Cited in 51 Documents MSC: 62L10 Sequential statistical analysis 62L15 Optimal stopping in statistics 62L99 Sequential statistical methods Keywords:asymptotically optimal tests; change-point problems; composite hypotheses testing; sequential analysis PDF BibTeX XML Cite \textit{B. Brodsky} and \textit{B. Darkhovsky}, Sequential Anal. 27, No. 2, 141--173 (2008; Zbl 1274.62512) Full Text: DOI arXiv References: [1] Armitage P., Statistical Society, Series B 12 pp 137– (1950) [2] DOI: 10.1109/18.340472 · Zbl 0828.62070 [3] DOI: 10.1214/aos/1032298296 · Zbl 0868.62063 [4] DOI: 10.1137/1135096 · Zbl 0744.62067 [5] Brodsky B. E., Non-parametric Statistical Diagnosis: Problems and Methods (2000) · Zbl 0995.62031 [6] DOI: 10.1016/j.jspi.2004.01.007 · Zbl 1062.62153 [7] DOI: 10.1007/s11203-006-9004-6 · Zbl 1148.62064 [8] DOI: 10.1137/1132096 · Zbl 0714.62045 [9] DOI: 10.1137/1132094 · Zbl 0716.62076 [10] Dragalin V. P., Survey of Applied and Industrial Mathematics 6 pp 387– (1999) [11] DOI: 10.1109/18.796383 · Zbl 1131.62313 [12] DOI: 10.1109/18.850677 · Zbl 1059.62581 [13] Fishman M. M., Soviet Journal of Communication and Technology of Electronics 30 pp 2541– (1987) [14] DOI: 10.1214/aoms/1177729489 · Zbl 0046.35405 [15] DOI: 10.1137/1128052 · Zbl 0541.62064 [16] DOI: 10.1214/aoms/1177705898 · Zbl 0098.32705 [17] DOI: 10.1080/07474949508836344 · Zbl 0838.62067 [18] DOI: 10.1214/aoms/1177707037 · Zbl 0079.35406 [19] DOI: 10.1214/aos/1176342461 · Zbl 0261.62062 [20] DOI: 10.1214/aos/1176345398 · Zbl 0459.62069 [21] DOI: 10.1214/aos/1176350840 · Zbl 0657.62088 [22] DOI: 10.1109/18.737522 · Zbl 0955.62084 [23] DOI: 10.1109/18.825826 · Zbl 0994.62078 [24] Lai T. L., Statistica Sinica 11 pp 303– (2001) [25] DOI: 10.1214/aoms/1177693055 · Zbl 0255.62067 [26] DOI: 10.1214/aos/1176343407 · Zbl 0367.62099 [27] DOI: 10.1214/aos/1176343737 · Zbl 0386.62070 [28] DOI: 10.1214/009053605000000859 · Zbl 1091.62064 [29] DOI: 10.1214/aos/1176350164 · Zbl 0612.62116 [30] DOI: 10.1109/18.370109 · Zbl 0826.93064 [31] Page E. S., Biometrika 41 pp 100– (1954) · Zbl 0056.38002 [32] Pavlov I. V., Theory of Probability and Its Applications 33 pp 138– (1988) · Zbl 0629.62082 [33] Petrov V. V., Limit Theorems for Sums of Independent Random Variables (1987) · Zbl 0621.60022 [34] DOI: 10.1214/aos/1176346587 · Zbl 0573.62074 [35] DOI: 10.1214/aos/1024691466 · Zbl 0927.62077 [36] DOI: 10.2307/1266688 [37] Shewhart W. A., Economic Control of Quality of Manufactured Products (1931) [38] Shiryaev A. N., Soviet Mathematical Doklady 138 pp 799– (1961) [39] Shiryaev A. N., Theory of Probability and Its Applications 8 pp 26– (1963) [40] DOI: 10.1070/RM1996v051n04ABEH002986 · Zbl 0882.62076 [41] DOI: 10.1214/aoms/1177698691 · Zbl 0178.22103 [42] DOI: 10.2307/2669484 [43] DOI: 10.1023/A:1009952514505 · Zbl 0943.62080 [44] Tartakovsky A. G., Applied of Sequential Methodologies pp 331– (2004) [45] DOI: 10.1109/TIT.2002.807288 · Zbl 1063.94518 [46] DOI: 10.1214/aoms/1177731118 · Zbl 0060.30207 [47] DOI: 10.1214/aoms/1177730197 · Zbl 0032.17302 [48] Woodroofe M., Nonlinear Renewal Theory in Sequential Analysis (1982) · Zbl 0487.62062 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.