×

On the theory of \(\mathcal{PT}\)-symmetric operators. (English. Russian original) Zbl 1275.47085

Ukr. Math. J. 64, No. 1, 35-55 (2012); translation from Ukr. Mat. Zh. 64, No. 1, 32-49 (2012).
It is known that the operator \(H=-\frac{d^2}{dx^2}+x^2(ix)^{\varepsilon}\), \(0\leq \varepsilon <2\), is non-selfadjoint in \(L_2(\mathbb{R})\) and its spectrum is real and positive. C. M. Bender and S. Boettcher [Phys. Rev. Lett. 80, No. 24, 5243–5246 (1998; Zbl 0947.81018)] explained such a property of the non-selfadjoint operator by its \(\mathcal{PT}\)-symmetry. This paper gives an abstract definition of \(\mathcal{PT}\)-symmetric operators in an arbitrary Hilbert space \(\mathfrak{H}\) and analyzes the status of \(\mathcal{PT}\)-symmetric operators as selfadjoint operators in Krein spaces. The authors note that \(\mathcal{PT}\)-symmetric operators are not always selfadjoint relative to the definite metric generated in the space \(\mathfrak{H} \) by the operator \(\mathcal{P}\). However, it is shown that \(\mathcal{PT}\)-symmetric quasi-selfadjoint extensions of symmetric operators with deficiency indices \(\langle 2,2 \rangle\) can play a role as selfadjoint operators in Krein spaces. Lastly, the results are illustrated with \(\mathcal{PT}\)-symmetric Schrödinger operators with singular potentials.

MSC:

47B50 Linear operators on spaces with an indefinite metric
47B25 Linear symmetric and selfadjoint operators (unbounded)
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

Citations:

Zbl 0947.81018
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. A. M. Dirac, ”Bakerian lecture. The physical interpretation of quantum mechanics,” Proc. Roy. Soc. London A, 180, No. 980, 1–40 (1942). · Zbl 0060.45501 · doi:10.1098/rspa.1942.0023
[2] C. M. Bender and S. Boettcher, ”Real spectra in non-Hermitian Hamiltonians having $\(\backslash\)mathcal{P}\(\backslash\)mathcal{T} $ -symmetry,” Phys. Rev. Lett., 80, No. 24, 5243–5246 (1998). · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[3] P. Dorey, C. Dunning, and R. Tateo, ”Spectral equivalence, Bethe ansatz, and reality properties in $ \(\backslash\)mathcal{P}\(\backslash\)mathcal{T} $ -symmetric quantum mechanics,” J. Phys. A: Math. Gen., 34, No. 28, 5679–5704 (2001). · Zbl 0982.81021 · doi:10.1088/0305-4470/34/28/305
[4] C. M. Bender, ”Making sense of non-Hermitian Hamiltonians,” Rep. Progr. Phys., 70, No. 6, 947–1018 (2007). · Zbl 1143.81312 · doi:10.1088/0034-4885/70/6/R03
[5] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1966). · Zbl 0098.30702
[6] T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric [in Russian], Nauka, Moscow (1986).
[7] E. Caliceti, F. Cannata, and S. Graffi, ” $ \(\backslash\)mathcal{P}\(\backslash\)mathcal{T}$ -symmetric Schrödinger operators: reality of the perturbed eigenvalues,” SIGMA, 6, 9–17 (2010). · Zbl 1202.47014
[8] P. Lounesto, Clifford Algebras and Spinors, Cambridge University Press, Cambridge (2001). · Zbl 0973.15022
[9] U. Günther and S. Kuzhel, ” $ \(\backslash\)mathcal{P}\(\backslash\)mathcal{T} $ -symmetry, Cartan decompositions, Lie triple systems, and Krein space-related Clifford algebras,” J. Phys. A: Math. Theor., 43, No. 39, 392,002–392,011 (2010). · Zbl 1213.47043 · doi:10.1088/1751-8113/43/39/392002
[10] S. Kuzhel and O. Patsiuk, ”On self-adjoint operators in Krein spaces constructed by Clifford algebra $ {\(\backslash\)mathcal C} $ l 2;” Opusc. Math., 32, No. 2, 297–316 (2012). · Zbl 1277.47051
[11] S. Kuzhel and C. Trunk, ”On a class of J-self-adjoint-operators with empty resolvent set,” J. Math. Anal. Appl., 379, No. 1, 272–289 (2011). · Zbl 1220.47053 · doi:10.1016/j.jmaa.2010.12.048
[12] S. Albeverio and S. Kuzhel, On Elements of the Lax–Phillips Scattering Scheme for $ \(\backslash\)mathcal{P}\(\backslash\)mathcal{T} $ -Symmetric Graphs, ArXiv:1202.1537v1.
[13] V. I. Gorbachuk, M. L. Gorbachuk, and A. N. Kochubei, ”Theory of extensions for symmetric operators and boundary-value problems for differential equations,” Ukr. Mat. Zh., 41, No. 10, 1299–1313 (1989); English translation: Ukr. Math. J., 41, No. 10, 1117–1129 (1989). · Zbl 0706.47001 · doi:10.1007/BF01057246
[14] V. I. Gorbachuk and M. L. Gorbachuk, Boundary-Value Problems for Differential-Operator Equations [in Russian], Naukova Dumka, Kiev (1984). · Zbl 0567.47041
[15] A. N. Kochubei, ”On the extensions of J-symmetric operators,” Teor. Funkts. Funkts. Anal. Prilozh., 31, 74–80 (1979).
[16] V. A. Derkach and M. M. Malamud, ”Generalized resolvents and the boundary-value problems for Hermitian operators with gaps,” J. Funct. Anal., 95, No. 1, 1–95 (1991). · Zbl 0748.47004 · doi:10.1016/0022-1236(91)90024-Y
[17] A. Zettl, Sturm–Liouville Theory, American Mathematical Society, Providence, RI (2005).
[18] A. N. Kochubei, ”Self-adjoint extensions of the Schrödinger operator with singular potential,” Sib. Mat. Zh., 32, No. 3, 60–69 (1991).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.