Sazonov, L. I. Estimates of perturbed Oseen semigroups and their applications to the Navier-Stokes system in \(\mathbb R^n\). (English. Russian original) Zbl 1283.35067 Math. Notes 91, No. 6, 833-846 (2012); translation from Math. Zametki 91, No. 6, 880-895 (2012). Summary: For perturbed Oseen semigroups in \(\mathbb R^n\), we establish their power \(L_p-L_q\) estimates. These estimates are used to prove the existence of small global solutions to perturbed nonlinear Oseen systems and also of estimates of their \(L_p\)-norms as \(t\to\infty\). Cited in 1 Document MSC: 35Q30 Navier-Stokes equations 76D07 Stokes and related (Oseen, etc.) flows 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:Oseen semigroup; perturbed nonlinear Oseen system; power \(L_p\)-\(L_q\) estimates; Navier-Stokes system; solenoidal field; Cauchy problem; Fourier transform PDFBibTeX XMLCite \textit{L. I. Sazonov}, Math. Notes 91, No. 6, 833--846 (2012; Zbl 1283.35067); translation from Math. Zametki 91, No. 6, 880--895 (2012) Full Text: DOI References: [1] V. I. Yudovich, Linearization Method in the Hydrodynamic Theory of Stability (Izd. Rostovsk. Univ., Rostov-on-Don, 1984) [in Russian]. [2] T. Kato, ”Strong L p-solutions of the Navier-Stokes equation in \(\mathbb{R}\)m, with applications to weak solutions,” Math. Z. 187(4), 471–480 (1984). · Zbl 0545.35073 · doi:10.1007/BF01174182 [3] L. I. Sazonov and V. I. Yudovich, ”Stability of stationary solutions of parabolic equations and of the Navier-Stokes system in the whole space,” Sibirsk. Mat. Zh. 29(1), 151–158 (1988) [Siberian Math. J. 29 (1), 117–123 (1988)]. · Zbl 0654.47034 [4] P. Biler, M. Cannone, and G. Karch, ”Asymptotic stability of Navier-Stokes flow past an obstacle,” in Nonlocal Elliptic and Parabolic Problems, Banach Center Publ. (Polish Acad. Sci., Warsaw, 2004), Vol. 66, pp. 47–59. · Zbl 1161.35459 [5] T. Miyakawa, ”On nonstationary solutions of the Navier-Stokes equations in an exterior domain,” Hiroshima Math J. 12(1), 115–140 (1982). · Zbl 0486.35067 [6] L. I. Sazonov, ”Justification of the linearizationmethod in the flow problem,” Izv. Ross. Akad. Nauk Ser.Mat. 58(5), 85–109 (1994) [Izv. Math. 45 (2), 315–337 (1994)]. · Zbl 0844.76026 [7] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (Birkhäuser, Berlin, 1977;Mir, Moscow, 1980). [8] L. I. Sazonov, ”Estimates for the perturbed Oseen semigroup,” Vladikavkaz.Mat. Zh. 11(3), 51–61 (2009). · Zbl 1324.35136 [9] H.-O. Bae and B.-J. Jin, ”Temporal and spatial decay rates of Navier-Stokes solutions in exterior domains,” Bull. Korean Math. Soc. 44(3), 547–567 (2007). · Zbl 1146.35070 · doi:10.4134/BKMS.2007.44.3.547 [10] T. Kobayashi and Y. Shibata, ”On the Oseen equation in the three-dimensional exterior domains,” Math. Ann. 310(1), 1–45 (1998). · Zbl 0891.35114 · doi:10.1007/s002080050134 [11] Y. Enomoto and Y. Shibata, ”On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation,” J. Math. Fluid Mech. 7(3), 339–367 (2005). · Zbl 1094.35097 · doi:10.1007/s00021-004-0132-8 [12] S. M. Nikol’skii, Approximation of Functions of Several Variables and Embedding Theorems (Nauka, Moscow, 1977) [in Russian]. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.