Bednyakov, A. V.; Pikelner, A. F.; Velizhanin, V. N. Three-loop Higgs self-coupling beta-function in the Standard Model with complex Yukawa matrices. (English) Zbl 1284.81320 Nucl. Phys., B 879, 256-267 (2014). Summary: Three-loop renormalization group equations for the Higgs self-coupling and Higgs mass parameter are recalculated in the case of complex Yukawa matrices which encompass the general flavor structure of the Standard Model. In addition, the anomalous dimensions for both the quantum Higgs field and its vacuum expectation value are presented in the \(\overline{\text{MS}}\)-scheme. A numerical study of the latter quantities is carried out for a certain set of initial parameters. Cited in 8 Documents MSC: 81V22 Unified quantum theories 81T17 Renormalization group methods applied to problems in quantum field theory 81T50 Anomalies in quantum field theory 81T80 Simulation and numerical modelling (quantum field theory) (MSC2010) Keywords:standard model; renormalization group Software:MATAD PDF BibTeX XML Cite \textit{A. V. Bednyakov} et al., Nucl. Phys., B 879, 256--267 (2014; Zbl 1284.81320) Full Text: DOI arXiv References: [1] Aad, G., Phys. Lett. B, 716, 1 (2012) [2] Chatrchyan, S., Phys. Lett. B, 716, 30 (2012) [3] Bezrukov, F., J. High Energy Phys., 1210, 140 (2012) [4] Alekhin, S.; Djouadi, A.; Moch, S., Phys. Lett. B, 716, 214 (2012) [5] Degrassi, G., J. High Energy Phys., 1208, 098 (2012) [6] Buttazzo, D. (2013) [7] Mihaila, L. N.; Salomon, J.; Steinhauser, M., Phys. Rev. Lett., 108, 151602 (2012) [8] Bednyakov, A.; Pikelner, A.; Velizhanin, V., Phys. Lett. B, 722, 336 (2013) [9] Chetyrkin, K.; Zoller, M., J. High Energy Phys., 1304, 091 (2013) [10] Fritzsch, H.; Xing, Z.z., Prog. Part. Nucl. Phys., 45, 1 (2000) [11] Luo, M.x.; Xiao, Y., Phys. Rev. Lett., 90, 011601 (2003) [12] Machacek, M. E.; Vaughn, M. T., Nucl. Phys. B, 222, 83 (1983) [13] Machacek, M. E.; Vaughn, M. T., Nucl. Phys. B, 236, 221 (1984) [14] Machacek, M. E.; Vaughn, M. T., Nucl. Phys. B, 249, 70 (1985) [15] Luo, M.x.; Wang, H.w.; Xiao, Y., Phys. Rev. D, 67, 065019 (2003) [16] Mihaila, L. N.; Salomon, J.; Steinhauser, M., Phys. Rev. D, 86, 096008 (2012) [17] Bednyakov, A.; Pikelner, A.; Velizhanin, V., J. High Energy Phys., 1301, 017 (2013) [18] Bednyakov, A.; Pikelner, A.; Velizhanin, V., Nucl. Phys. B, 875, 552 (2013) [19] Tentyukov, M.; Fleischer, J., Comput. Phys. Commun., 132, 124 (2000) [20] Vladimirov, A., Theor. Math. Phys., 43, 417 (1980) [21] Chetyrkin, K.; Zoller, M., J. High Energy Phys., 1206, 033 (2012) [22] Steinhauser, M., Comput. Phys. Commun., 134, 335 (2001) [23] Misiak, M.; Munz, M., Phys. Lett. B, 344, 308 (1995) [24] Chetyrkin, K. G.; Misiak, M.; Munz, M., Nucl. Phys. B, 518, 473 (1998) [25] The library can be downloaded from [27] van Ritbergen, T.; Schellekens, A.; Vermaseren, J., Int. J. Mod. Phys. A, 14, 41 (1999) [28] Jegerlehner, F.; Kalmykov, M. Y.; Kniehl, B. A., Phys. Lett. B, 722, 123 (2013) [29] ʼt Hooft, G.; Veltman, M., Nucl. Phys. B, 44, 189 (1972) [30] Sperling, M.; Stöckinger, D.; Voigt, A., J. High Energy Phys., 1307, 132 (2013) [31] Sperling, M.; Stöckinger, D.; Voigt, A. (2013) [32] Ford, C.; Jack, I.; Jones, D., Nucl. Phys. B, 387, 373 (1992) [33] Martin, S. P., Phys. Rev. D, 65, 116003 (2002) [34] Martin, S. P. (2013) [35] Jegerlehner, F.; Kalmykov, M. Y.; Kniehl, B. A. (2013) [36] Jegerlehner, F. (2013) [37] Fleischer, J.; Jegerlehner, F., Phys. Rev. D, 23, 2001 (1981) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.