×

Nonparametric Bernstein-von Mises theorems in Gaussian white noise. (English) Zbl 1285.62052

Summary: Bernstein-von Mises theorems for nonparametric Bayes priors in the Gaussian white noise model are proved. It is demonstrated how such results justify Bayes methods as efficient frequentist inference procedures in a variety of concrete nonparametric problems. Particularly, Bayesian credible sets are constructed that have an asymptotically exact \(1-\alpha\) frequentist coverage level and whose \(L^2\)-diameter shrinks at the minimax rate of convergence (within logarithmic factors) over Hölder balls. Other applications include general classes of linear and nonlinear functionals and credible bands for auto-convolutions. The assumptions cover non-conjugate product priors defined on general orthonormal bases of \(L^2\) satisfying weak conditions.

MSC:

62G20 Asymptotic properties of nonparametric inference
62G15 Nonparametric tolerance and confidence regions
62F15 Bayesian inference
62M99 Inference from stochastic processes
62G08 Nonparametric regression and quantile regression
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Araujo, A. and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables . Wiley, New York. · Zbl 0457.60001
[2] Bickel, P. J. and Kleijn, B. J. K. (2012). The semiparametric Bernstein-von Mises theorem. Ann. Statist. 40 206-237. · Zbl 1246.62081 · doi:10.1214/11-AOS921
[3] Bickel, P. J. and Ritov, Y. (2003). Nonparametric estimators which can be “plugged-in.” Ann. Statist. 31 1033-1053. · Zbl 1058.62031 · doi:10.1214/aos/1059655904
[4] Billingsley, P. and Topsøe, F. (1967). Uniformity in weak convergence. Z. Wahrsch. Verw. Gebiete 7 1-16. · Zbl 0147.15701 · doi:10.1007/BF00532093
[5] Bogachev, V. I. (1998). Gaussian Measures. Mathematical Surveys and Monographs 62 . Amer. Math. Soc., Providence, RI. · Zbl 0938.28010
[6] Bontemps, D. (2011). Bernstein-von Mises theorems for Gaussian regression with increasing number of regressors. Ann. Statist. 39 2557-2584. · Zbl 1231.62061 · doi:10.1214/11-AOS912
[7] Boucheron, S. and Gassiat, E. (2009). A Bernstein-von Mises theorem for discrete probability distributions. Electron. J. Stat. 3 114-148. · Zbl 1326.62036 · doi:10.1214/08-EJS262
[8] Castillo, I. (2012). A semiparametric Bernstein-von Mises theorem for Gaussian process priors. Probab. Theory Related Fields 152 53-99. · Zbl 1232.62054 · doi:10.1007/s00440-010-0316-5
[9] Clarke, B. and Ghosal, S. (2010). Reference priors for exponential families with increasing dimension. Electron. J. Stat. 4 737-780. · Zbl 1329.62120 · doi:10.1214/10-EJS569
[10] Cohen, A., Daubechies, I. and Vial, P. (1993). Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1 54-81. · Zbl 0795.42018 · doi:10.1006/acha.1993.1005
[11] Cox, D. D. (1993). An analysis of Bayesian inference for nonparametric regression. Ann. Statist. 21 903-923. · Zbl 0778.62003 · doi:10.1214/aos/1176349157
[12] Dudley, R. M. (2002). Real Analysis and Probability . Cambridge Univ. Press, Cambridge. · Zbl 1023.60001
[13] Folland, G. B. (1999). Real Analysis : Modern Techniques and Their Applications , 2nd ed. Wiley, New York. · Zbl 0924.28001
[14] Freedman, D. (1999). On the Bernstein-von Mises theorem with infinite-dimensional parameters. Ann. Statist. 27 1119-1140. · Zbl 0957.62002
[15] Frees, E. W. (1994). Estimating densities of functions of observations. J. Amer. Statist. Assoc. 89 517-525. · Zbl 0798.62051 · doi:10.2307/2290854
[16] Ghosal, S. (1999). Asymptotic normality of posterior distributions in high-dimensional linear models. Bernoulli 5 315-331. · Zbl 0948.62007 · doi:10.2307/3318438
[17] Ghosal, S. (2000). Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity. J. Multivariate Anal. 74 49-68. · Zbl 1118.62309 · doi:10.1006/jmva.1999.1874
[18] Ghosal, S., Ghosh, J. K. and van der Vaart, A. W. (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500-531. · Zbl 1105.62315 · doi:10.1214/aos/1016218228
[19] Ghosal, S. and van der Vaart, A. (2007). Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Statist. 35 192-223. · Zbl 1114.62060 · doi:10.1214/009053606000001172
[20] Giné, E. and Mason, D. M. (2007). On local \(U\)-statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 35 1105-1145. · Zbl 1175.60017 · doi:10.1214/009053607000000154
[21] Giné, E. and Nickl, R. (2008). Uniform central limit theorems for kernel density estimators. Probab. Theory Related Fields 141 333-387. · Zbl 1141.62022 · doi:10.1007/s00440-007-0087-9
[22] Giné, E. and Nickl, R. (2009). Uniform limit theorems for wavelet density estimators. Ann. Probab. 37 1605-1646. · Zbl 1255.62103 · doi:10.1214/08-AOP447
[23] Giné, E. and Nickl, R. (2011). Rates on contraction for posterior distributions in \(L^{r}\)-metrics, \(1\leq r\leq\infty\). Ann. Statist. 39 2883-2911. · Zbl 1246.62095
[24] Kiefer, J. and Wolfowitz, J. (1976). Asymptotically minimax estimation of concave and convex distribution functions. Z. Wahrsch. Verw. Gebiete 34 73-85. · Zbl 0354.62035 · doi:10.1007/BF00532690
[25] Knapik, B. T., van der Vaart, A. W. and van Zanten, J. H. (2011). Bayesian inverse problems with Gaussian priors. Ann. Statist. 39 2626-2657. · Zbl 1232.62079 · doi:10.1214/11-AOS920
[26] Laplace, P. S. (1810). Mémoire sur les formules qui sont fonctions de très grands nombres et sur leurs applications aux probabilités. Oeuvres de Laplace 12 301-345.
[27] Laurent, B. (1996). Efficient estimation of integral functionals of a density. Ann. Statist. 24 659-681. · Zbl 0859.62038 · doi:10.1214/aos/1032894458
[28] Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory . Springer, New York. · Zbl 0605.62002
[29] Leahu, H. (2011). On the Bernstein-von Mises phenomenon in the Gaussian white noise model. Electron. J. Stat. 5 373-404. · Zbl 1274.62290 · doi:10.1214/11-EJS611
[30] Nickl, R. (2007). Donsker-type theorems for nonparametric maximum likelihood estimators. Probab. Theory Related Fields 138 411-449. Correction ibid. 141 331-332. · Zbl 1140.60311 · doi:10.1007/s00440-006-0031-4
[31] Nickl, R. (2009). On convergence and convolutions of random signed measures. J. Theoret. Probab. 22 38-56. · Zbl 1175.60030 · doi:10.1007/s10959-008-0177-3
[32] Rivoirard, V. and Rousseau, J. (2012). Bernstein-von Mises theorem for linear functionals of the density. Ann. Statist. 40 1489-1523. · Zbl 1257.62036 · doi:10.1214/12-AOS1004
[33] Schick, A. and Wefelmeyer, W. (2004). Root \(n\) consistent density estimators for sums of independent random variables. J. Nonparametr. Stat. 16 925-935. · Zbl 1062.62065 · doi:10.1080/10485250410001713990
[34] Shen, X. and Wasserman, L. (2001). Rates of convergence of posterior distributions. Ann. Statist. 29 687-714. · Zbl 1041.62022 · doi:10.1214/aos/1009210686
[35] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001
[36] van der Vaart, A. W. and van Zanten, J. H. (2008). Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36 1435-1463. · Zbl 1141.60018 · doi:10.1214/009053607000000613
[37] van der Vaart, A. W. and van Zanten, J. H. (2008). Reproducing kernel Hilbert spaces of Gaussian priors. In Pushing the Limits of Contemporary Statistics : Contributions in Honor of Jayanta K. Ghosh. Inst. Math. Stat. Collect. 3 200-222. IMS, Beachwood, OH. · Zbl 1141.60018 · doi:10.1214/074921708000000156
[38] van der Vaart, A. W. and van Zanten, J. H. (2009). Adaptive Bayesian estimation using a Gaussian random field with inverse gamma bandwidth. Ann. Statist. 37 2655-2675. · Zbl 1173.62021 · doi:10.1214/08-AOS678
[39] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes : With Applications to Statistics . Springer, New York. · Zbl 0862.60002
[40] von Mises, R. (1931). Wahrscheinlichkeitsrechnung . Deuticke, Vienna. · JFM 57.1499.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.