Supersymmetric \(\mathrm{AdS}_{3} \times S^{2}\) M-theory geometries with fluxes. (English) Zbl 1290.81109

Summary: Motivated by a recent observation that the LLM geometries admit 1/4-BPS M5-brane probes with worldvolume \(\mathrm{AdS}_{3} \times \Sigma_{2} \times S^{1}\) preserving the R-symmetry, \(\mathrm{SU}(2)\times\mathrm U(1)\), we initiate a classification of the most general \(\mathrm{AdS}_{3} \times S^{2}\) geometries in M-theory dual to two-dimensional chiral \(\mathcal{N} = \left( {4,0} \right)\) SCFTs. We retain all field strengths consistent with symmetry and derive the torsion conditions for the internal six-manifold, \(M_{6}\), in terms of two linearly independent spinors. Surprisingly, we identify three Killing directions for \(M_{6}\), but only two of these generate isometries of the overall ansatz. We show that the existence of this third direction depends on the norm of the spinors. With the torsion conditions derived, we establish the MSW solution as the only solution in the class where \(M_6\) is an SU(3)-structure manifold. Then, specialising to the case where the spinors define an SU(2)-structure, we note that supersymmetry dictates that all magnetic fluxes necessarily thread the \(S^{2}\). Finally, by assuming that the two remaining Killing directions are parallel and aligned with one of the two vectors defining the SU(2)-structure, we derive a general relationship for the two spinors before extracting a known class of solutions from the torsion conditions.


81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E50 Supergravity
81R60 Noncommutative geometry in quantum theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
20C35 Applications of group representations to physics and other areas of science
Full Text: DOI arXiv


[1] D. Gaiotto, N=2 dualities, arXiv:0904.2715 [SPIRES]. · Zbl 1397.81362
[2] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys.91 (2010) 167 [arXiv:0906.3219] [SPIRES]. · Zbl 1185.81111
[3] N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP09 (2009) 031 [arXiv:0907.2593] [SPIRES].
[4] L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP01 (2010) 113 [arXiv:0909.0945] [SPIRES]. · Zbl 1269.81078
[5] N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP02 (2010) 057 [arXiv:0909.1105] [SPIRES]. · Zbl 1270.81134
[6] D. Gaiotto, Surface operators in N = 2 4d gauge theories, arXiv:0911.1316 [SPIRES]. · Zbl 1397.81363
[7] J.-F. Wu and Y. Zhou, From Liouville to Chern-Simons, alternative realization of Wilson loop operators in AGT duality, arXiv:0911.1922 [SPIRES].
[8] B. Chen, E.O. Colgain, J.-B. Wu and H. Yavartanoo, N = 2 SCFTs: an M5-brane perspective, JHEP04 (2010) 078 [arXiv:1001.0906] [SPIRES]. · Zbl 1272.81146
[9] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [SPIRES].
[10] A. Donos, A description of 1/4 BPS configurations in minimal type IIB SUGRA, Phys. Rev.D 75 (2007) 025010 [hep-th/0606199] [SPIRES].
[11] P. Figueras, O.A.P. Mac Conamhna and E. O Colgain, Global geometry of the supersymmetric AdS3/CFT2correspondence in M-theory, Phys. Rev.D 76 (2007) 046007 [hep-th/0703275] [SPIRES].
[12] A. Donos, BPS states in type IIB SUGRA with SO(4) × SO(2)(gauged) symmetry, JHEP05 (2007) 072 [hep-th/0610259] [SPIRES].
[13] N. Kim, AdS3solutions of IIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [SPIRES].
[14] E. Gava, G. Milanesi, K.S. Narain and M. O’Loughlin, 1/8 BPS states in AdS/CFT, JHEP05 (2007) 030 [hep-th/0611065] [SPIRES].
[15] O.A.P. Mac Conamhna and E. O Colgain, Supersymmetric wrapped membranes, AdS2spaces and bubbling geometries, JHEP03 (2007) 115 [hep-th/0612196] [SPIRES].
[16] N. Kim and J.-D. Park, Comments on AdS2solutions of D = 11 supergravity, JHEP09 (2006) 041 [hep-th/0607093] [SPIRES].
[17] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS3, AdS2and bubble solutions, JHEP04 (2007) 005 [hep-th/0612253] [SPIRES].
[18] J.P. Gauntlett and O.A.P. Mac Conamhna, AdS spacetimes from wrapped D3-branes, Class. Quant. Grav.24 (2007) 6267 [arXiv:0707.3105] [SPIRES]. · Zbl 1133.83012
[19] B. Chen et al., Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity, JHEP10 (2007) 003 [arXiv:0704.2233] [SPIRES].
[20] D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, arXiv:0904.4466 [SPIRES]. · Zbl 1397.83038
[21] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [SPIRES]. · Zbl 0984.83052
[22] E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP06 (2007) 063 [arXiv:0705.1004] [SPIRES].
[23] O. Lunin, On gravitational description of Wilson lines, JHEP06 (2006) 026 [hep-th/0604133] [SPIRES].
[24] S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys.A 22 (2007) 1353 [hep-th/0601089] [SPIRES]. · Zbl 1125.81039
[25] O. Lunin, 1/2-BPS states in M-theory and defects in the dual CFTs, JHEP10 (2007) 014 [arXiv:0704.3442] [SPIRES].
[26] E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact half-BPS flux solutions in M-theory I, local solutions, JHEP08 (2008) 028 [arXiv:0806.0605] [SPIRES].
[27] E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact half-BPS flux solutions in M-theory II: global solutions asymptotic to AdS7xS4, JHEP12 (2008) 044 [arXiv:0810.4647] [SPIRES]. · Zbl 1329.83186
[28] J. Gomis and S. Matsuura, Bubbling surface operators and S-duality, JHEP06 (2007) 025 [arXiv:0704.1657] [SPIRES].
[29] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5solutions of M-theory, Class. Quant. Grav.21 (2004) 4335 [hep-th/0402153] [SPIRES]. · Zbl 1059.83038
[30] J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G-structures and wrapped NS5-branes, Commun. Math. Phys.247 (2004) 421 [hep-th/0205050] [SPIRES]. · Zbl 1061.81058
[31] J.P. Gauntlett and S. Pakis, The geometry of D = 11 Killing spinors, JHEP04 (2003) 039 [hep-th/0212008] [SPIRES].
[32] J.P. Gauntlett, J.B. Gutowski and S. Pakis, The geometry of D = 11 null Killing spinors, JHEP12 (2003) 049 [hep-th/0311112] [SPIRES].
[33] O.A.P. Mac Conamhna, Eight-manifolds with G-structure in eleven dimensional supergravity, Phys. Rev.D 72 (2005) 086007 [hep-th/0504028] [SPIRES].
[34] M. Cariglia and O.A.P. Mac Conamhna, Null structure groups in eleven dimensions, Phys. Rev.D 73 (2006) 045011 [hep-th/0411079] [SPIRES].
[35] H. Kim, K.K. Kim and N. Kim, 1/4-BPS M-theory bubbles with SO(3) × SO(4) symmetry, JHEP08 (2007) 050 [arXiv:0706.2042] [SPIRES].
[36] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, AdS spacetimes from wrapped M5 branes, JHEP11 (2006) 053 [hep-th/0605146] [SPIRES].
[37] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP12 (1997) 002 [hep-th/9711053] [SPIRES].
[38] L.J. Romans, Gauged N = 4 supergravities in five-dimensions and their magnetovac backgrounds, Nucl. Phys.B 267 (1986) 433 [SPIRES].
[39] J.P. Gauntlett and O. Varela, D = 5 SU(2) × U(1) Gauged supergravity from D = 11 supergravity, JHEP02 (2008) 083 [arXiv:0712.3560] [SPIRES].
[40] J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev.D 69 (2004) 086002 [hep-th/0302158] [SPIRES].
[41] D. Martelli and J. Sparks, G-structures, fluxes and calibrations in M-theory, Phys. Rev.D 68 (2003) 085014 [hep-th/0306225] [SPIRES].
[42] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5solutions of type IIB supergravity, Class. Quant. Grav.23 (2006) 4693 [hep-th/0510125] [SPIRES]. · Zbl 1096.83069
[43] H. Lü, C.N. Pope and J. Rahmfeld, A construction of Killing spinors on Sn, J. Math. Phys.40 (1999) 4518 [hep-th/9805151] [SPIRES]. · Zbl 0979.53053
[44] M.F. Sohnius, Introducing supersymmetry, Phys. Rept.128 (1985) 39 [SPIRES].
[45] M. Ademollo et al., Dual string with U(1) color symmetry, Nucl. Phys.B 111 (1976) 77 [SPIRES].
[46] M. Ademollo et al., Supersymmetric strings and color confinement, Phys. Lett.B 62 (1976) 105 [SPIRES].
[47] A. Sevrin, W. Troost and A. Van Proeyen, Superconformal algebras in two-dimensions with N = 4, Phys. Lett.B 208 (1988) 447 [SPIRES].
[48] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS3 × S3 × S3 × S1, Adv. Theor. Math. Phys.9 (2005) 435 [hep-th/0403090] [SPIRES]. · Zbl 1121.81106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.