×

Holographic evolution of entanglement entropy. (English) Zbl 1294.81128

Summary: We study the evolution of entanglement entropy in a 2-dimensional equilibration process that has a holographic description in terms of a Vaidya geometry. It models a unitary evolution in which the field theory starts in a pure state, its vacuum, and undergoes a perturbation that brings it far from equilibrium. The entanglement entropy in this set up provides a measurement of the quantum entanglement in the system. Using holographic techniques we recover the same result obtained before from the study of processes triggered by a sudden change in a parameter of the Hamiltonian, known as quantum quenches. Namely, entanglement in 2-dimensional conformal field theories propagates with velocity \(v^{2} = 1\) [P. Calabrese and J. L. Cardy, “Evolution of entanglement entropy in one-dimensional systems”, J. Stat. Mech. Theory Exp. 2005, No. 4, Paper P04010, 4 p. (2005) arxiv:cond-mat/0503393]. Both in quantum quenches and in the Vaidya model equilibration is only achieved at the local level. Remarkably, the holographic derivation of this last fact requires information from behind the apparent horizon generated in the process of gravitational collapse described by the Vaidya geometry. In the early stages of the evolution the apparent horizon seems however to play no relevant role with regard to the entanglement entropy. We speculate on the possibility of deriving a thermalization time for occupation numbers from our analysis.

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C57 Black holes
81P40 Quantum coherence, entanglement, quantum correlations
94A17 Measures of information, entropy
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] P. Calabrese and J .L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393] [SPIRES]. · Zbl 1456.82578
[2] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [SPIRES]. · Zbl 1057.81550
[3] D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci.57 (2007) 95 [arXiv:0704.0240] [SPIRES].
[4] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [SPIRES].
[5] R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP04 (2008) 100 [arXiv:0712.2451] [SPIRES]. · Zbl 1246.81352
[6] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [SPIRES].
[7] P. Reimann, Foundation of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett.101 (2008) 190403 [SPIRES].
[8] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [SPIRES].
[9] U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys.B 563 (1999) 279 [hep-th/9905227] [SPIRES]. · Zbl 0953.83038
[10] U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP02 (2000) 039 [hep-th/9912209] [SPIRES]. · Zbl 0959.83024
[11] P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett.102 (2009) 211601 [arXiv:0812.2053] [SPIRES].
[12] G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP10 (2009) 043 [arXiv:0906.4423] [SPIRES].
[13] P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-fromequilibrium dynamics in N =4 supersymmetric Yang-Mills theory, Phys. Rev.D 82 (2010) 026006 [arXiv:0906.4426] [SPIRES].
[14] S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP09 (2009) 034 [arXiv:0904.0464] [SPIRES].
[15] S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/ CFT , JHEP07 (2010) 071 [arXiv:1005.3348] [SPIRES]. · Zbl 1290.81090
[16] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys.A 42 (2009) 504005 [arXiv:0905.4013] [SPIRES]. · Zbl 1179.81026
[17] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys.A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES]. · Zbl 1179.81138
[18] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [SPIRES]. · Zbl 1228.83110
[19] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [SPIRES].
[20] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [SPIRES].
[21] M.A. Cazalilla, The Luttinger model following a sudden interaction switch-on, Phys. Rev. Lett.97 (2006) 156403.
[22] A. Iucci and M.A. Cazalilla, Quantum quench dynamics of some exactly solvable models in one dimension, Phys. Rev.A 80 (2009) 063619 [arXiv:0903.1205].
[23] A. Ashtekar and B. Krishnan, Isolated and dynamical horizons and their applications, Living Rev. Rel.7 (2004) 10 [gr-qc/0407042] [SPIRES]. · Zbl 1071.83036
[24] I. Booth, Black hole boundaries, Can. J. Phys.83 (2005) 1073 [gr-qc/0508107] [SPIRES].
[25] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [SPIRES]. · Zbl 0990.81564
[26] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett.90 (2003) 227902 [quant-ph/0211074] [SPIRES].
[27] J.I. Latorre, E. Rico and G. Vidal, Ground state entanglement in quantum spin chains, Quant. Inf. Comput.4 (2004) 48 [quant-ph/0304098] [SPIRES]. · Zbl 1175.82017
[28] B.-Q. Jin and V.E. Korepin, Quantum spin chain, Toeplitz determinants and Fisher-Hartwig conjecture, J. of Stat. Phys.116 (2004) 79 [quant-ph/0304108]. · Zbl 1142.82314
[29] P. Calabrese and J .L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES]. · Zbl 1082.82002
[30] S. Sotiriadis and J. Cardy, Inhomogeneous quantum quenches, J. Stat. Mech. (2008) P 11003 [arXiv:0808.0116].
[31] P. Calabrese and J .L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett.96 (2006) 136801 [cond-mat/0601225] [SPIRES].
[32] P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech. (2007) 06008 [arXiv:0704. 1880] [SPIRES]. · Zbl 1456.81358
[33] G. De Chiara, S. Montangero, P. Calabrese and R. Fazio, Entanglement entropy dynamics in Heisenberg chains, J. Stat. Mech. (2006) P03001 [cond-mat/0512586] [SPIRES].
[34] J. Eisert and T.J. Osborne, General entanglement scaling laws from time evolution, Phys. Rev. Lett.97 (2006) 150404 [SPIRES]. · Zbl 1228.82063
[35] S. Bravyi, M.B. Hastings and F. Verstraete, Lieb-Robinson bounds and the generation of correlations and topological quantum order, Phys. Rev. Lett.97 (2006) 050401 [quant-ph/0603121].
[36] L. Cincio, J. Dziarmaga, M.M. Rams and W.H. Zurek, Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model, Phys. Rev.A 75 (2007) [cond-mat/0701768] [SPIRES].
[37] N. Schuch, M.M. Wolf, K.G.H. Vollbrecht and J.I. Cirac, On entropy growth and the hardness of simulating time evolution, New J. Phys.10 (2008) 033032 [arXiv:0801.2078].
[38] V. Eisler and I. Peschel, Entanglement in a periodic quench, Ann. Phys. (Berlin)17 (2008) 410 [arXiv:0803. 2655]. · Zbl 1153.82014
[39] M. Fagotti and P. Calabrese, Evolution of entanglement entropy following a quantum quench: Analytic results for the XY chain in a transverse magnetic field, Phys. Rev.A 78 (2008) 010306(R) [arXiv:0804.3559].
[40] H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einstein’s field equations, Cambridge University Press, Cambridge U.K. (2003) pg. 701. · Zbl 1057.83004
[41] S. Furukawa, V. Pasquier and J. Shiraishi, Mutual information and compactification radius in a c=1 critical phase in one dimension, arXiv:0809.5113 [SPIRES].
[42] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. (2009) P11001 [arXiv:0905.2069] [SPIRES]. · Zbl 1456.81360
[43] V. Alba, L. Tagliacozzo and P. Calabrese, Entanglement entropy of two disjoint blocks in critical Ising models, arXiv:0910.0706 [SPIRES]. · Zbl 1456.81346
[44] M. Headrick, Entanglement Renyi entropies in holographic theories, arXiv:1006.0047 [SPIRES].
[45] P.C. Vaidya, The external field of a radiating star in general relativity, Curr. Sci.12 (1943) 183.
[46] P.C. Vaidya, The gravitational field of a radiating star, Pro. Indian Acad. A.33 (1951) 264. · Zbl 0044.42202
[47] S.W. Hawking and G.F.R. Ellis, The Large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973). · Zbl 0265.53054
[48] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [SPIRES]. · Zbl 0946.83013
[49] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [SPIRES]. · Zbl 0984.83043
[50] M. Srednicki, Entropy and area, Phys. Rev. Lett.71 (1993) 666 [hep-th/9303048] [SPIRES]. · Zbl 0972.81649
[51] P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP04 (2009) 137 [arXiv:0902.4696] [SPIRES].
[52] D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP09 (2006) 018 [hep-th/0606184] [SPIRES].
[53] M. Cramer, C. M. Dawson, J. Eisert and T.J. Osborne, Exact relaxation in a class of nonequilibrium quantum lattice systems, Phys. Rev. Lett.100 (2008) 030602 [cond-mat/0703314] [SPIRES].
[54] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev.D 61 (2000) 044007 [hep-th/9906226] [SPIRES].
[55] I. Amado, C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Hydrodynamics and beyond in the strongly coupled N =4 plasma, JHEP07 (2008) 133 [arXiv:0805.2570] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.