van Rees, Balt C. Holographic renormalization for irrelevant operators and multi-trace counterterms. (English) Zbl 1298.81202 J. High Energy Phys. 2011, No. 8, Paper No. 093, 36 p. (2011). Summary: We investigate the structure of holographic renormalization in the presence of sources for irrelevant operators. By working perturbatively in the sources we avoid issues related to the non-renormalizability of the dual field theory. We find new classes of divergences which appear to be non-local on the gravity side. However in all cases a systematic renormalization procedure exists involving either standard local counterterms or new counterterms which may be interpreted as multi-trace counterterms in the field theory. The multi-trace counterterms reflect a more intricate relation between sources and the asymptotics of bulk fields. Cited in 1 ReviewCited in 24 Documents MSC: 81T13 Yang-Mills and other gauge theories in quantum field theory 81V17 Gravitational interaction in quantum theory 81T20 Quantum field theory on curved space or space-time backgrounds 81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics 81T15 Perturbative methods of renormalization applied to problems in quantum field theory 83F05 Relativistic cosmology Keywords:gauge-gravity correspondence; AdS-CFT correspondence PDF BibTeX XML Cite \textit{B. C. van Rees}, J. High Energy Phys. 2011, No. 8, Paper No. 093, 36 p. (2011; Zbl 1298.81202) Full Text: DOI arXiv References: [1] D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev.D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES]. [2] K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett.101 (2008) 061601 [arXiv:0804.4053] [SPIRES]. · Zbl 1228.81247 [3] S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev.D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES]. [4] A. Hashimoto and N. Itzhaki, Non-commutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett.B 465 (1999) 142 [hep-th/9907166] [SPIRES]. · Zbl 0987.81108 [5] J.M. Maldacena and J.G. Russo, Large-N limit of non-commutative gauge theories, JHEP09 (1999) 025 [hep-th/9908134] [SPIRES]. [6] M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP02 (2011) 056 [arXiv:1008.1991] [SPIRES]. · Zbl 1294.81106 [7] R.N. Caldeira Costa and M. Taylor, Holography for chiral scale-invariant models, JHEP02 (2011) 082 [arXiv:1010.4800] [SPIRES]. · Zbl 1294.81097 [8] M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev.D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES]. [9] G. Compere, W. Song and A. Virmani, Microscopics of Extremal Kerr from Spinning M5 Branes, arXiv:1010.0685 [SPIRES]. · Zbl 1303.81155 [10] M. Guica and A. Strominger, Microscopic Realization of the Kerr/CFT Correspondence, JHEP02 (2011) 010 [arXiv:1009.5039] [SPIRES]. · Zbl 1294.81199 [11] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [SPIRES]. · Zbl 1044.83009 [12] E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett.B 442 (1998) 152 [hep-th/9806217] [SPIRES]. · Zbl 1002.81538 [13] E.T. Akhmedov, Notes on multi-trace operators and holographic renormalization group, hep-th/0202055 [SPIRES]. [14] I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP06 (2011) 031 [arXiv:1010.1264] [SPIRES]. · Zbl 1298.81181 [15] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES]. · Zbl 1081.81085 [16] J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP08 (2000) 003 [hep-th/9912012] [SPIRES]. · Zbl 0989.81538 [17] J. de Boer, The holographic renormalization group, Fortsch. Phys.49 (2001) 339 [hep-th/0101026] [SPIRES]. · Zbl 1004.83049 [18] D. Martelli and W. Mueck, Holographic renormalization and Ward identities with the Hamilton-Jacobi method, Nucl. Phys.B 654 (2003) 248 [hep-th/0205061] [SPIRES]. · Zbl 1010.81059 [19] B.C. van Rees, Irrelevant deformations and the holographic Callan-Symanzik equation, [arXiv:1105.5396] [SPIRES]. · Zbl 1303.81125 [20] M. Berkooz, A. Sever and A. Shomer, Double-trace deformations, boundary conditions and spacetime singularities, JHEP05 (2002) 034 [hep-th/0112264] [SPIRES]. [21] E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES]. [22] W. Mueck, An improved correspondence formula for AdS/CFT with multi-trace operators, Phys. Lett.B 531 (2002) 301 [hep-th/0201100] [SPIRES]. [23] A. Sever and A. Shomer, A note on multi-trace deformations and AdS/CFT, JHEP07 (2002) 027 [hep-th/0203168] [SPIRES]. [24] S. Elitzur, A. Giveon, M. Porrati and E. Rabinovici, Multitrace deformations of vector and adjoint theories and their holographic duals, JHEP02 (2006) 006 [hep-th/0511061] [SPIRES]. [25] I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP05 (2007) 075 [hep-th/0703152] [SPIRES]. [26] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP08 (2005) 004 [hep-th/0505190] [SPIRES]. [27] I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP11 (2010) 014 [arXiv:1007.4592] [SPIRES]. · Zbl 1294.81227 [28] K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the Topologically Massive Gravity/ CFT correspondence, arXiv:0909.5617 [SPIRES]. [29] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [SPIRES]. · Zbl 0984.83043 [30] M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP08 (2001) 041 [hep-th/0105276] [SPIRES]. [31] M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic Renormalization, Nucl. Phys.B 631 (2002) 159 [hep-th/0112119] [SPIRES]. · Zbl 0995.81075 [32] I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP10 (2004) 075 [hep-th/0407071] [SPIRES]. [33] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys.104 (1986) 207 [SPIRES]. · Zbl 0584.53039 [34] E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/ CFT correspondence, hep-th/0201253 [SPIRES]. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.