×

Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols. (English) Zbl 1302.65086

Summary: The paper presents higher-order asymptotic formulas for the eigenvalues of large Hermitian Toeplitz matrices with moderately smooth symbols which trace out a simple loop on the real line. The formulas are established not only for the extreme eigenvalues, but also for the inner eigenvalues. The results extend and make more precise existing results, which so far pertain to banded matrices or to matrices with infinitely differentiable symbols. Also given is a fixed-point equation for the eigenvalues which may be solved numerically by an iteration method.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15B05 Toeplitz, Cauchy, and related matrices
15B57 Hermitian, skew-Hermitian, and related matrices
Full Text: DOI

References:

[1] Basor, E., Toeplitz Determinants and Statistical Mechanics, Encyclopedia Math. Phys., vol. 5, 244-251 (2006), Elsevier
[2] Basor, E.; Morrison, K. E., The Fisher-Hartwig conjecture and Toeplitz eigenvalues, Linear Algebra Appl., 202, 129-142 (1994) · Zbl 0805.15004
[3] Böttcher, A.; Grudsky, S., Spectral Properties of Banded Toeplitz Matrices (2005), SIAM: SIAM Philadelphia · Zbl 1089.47001
[4] Böttcher, A.; Grudsky, S.; Maksimenko, E. A., Inside the eigenvalues of certain Hermitian Toeplitz band matrices, J. Comput. Appl. Math., 233, 2245-2264 (2010) · Zbl 1195.15009
[5] Böttcher, A.; Grudsky, S.; Maksimenko, E. A.; Unterberger, J., The first order asymptotics of the extreme eigenvectors of certain Hermitian Toeplitz matrices, Integral Equations Operator Theory, 63, 165-180 (2009) · Zbl 1181.47023
[6] Böttcher, A.; Silbermann, B., Introduction to Large Truncated Toeplitz Matrices, Universitext (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0916.15012
[7] Dai, H.; Geary, Z.; Kadanoff, L. P., Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices, J. Stat. Mech. Theory Exp., 5, P05012 (2009), 25 pp · Zbl 1456.15005
[8] Deift, P.; Its, A.; Krasovsky, I., Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities, Ann. of Math., 174, 1243-1299 (2011) · Zbl 1232.15006
[9] Deift, P.; Its, A.; Krasovsky, I., Eigenvalues of Toeplitz matrices in the bulk of the spectrum, Bull. Inst. Math. Acad. Sin. (N.S.), 7, 437-461 (2012) · Zbl 1292.15029
[10] Deift, P.; Its, A.; Krasovsky, I., Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model. Some history and some recent results, Comm. Pure Appl. Math., 66, 1360-1438 (2013) · Zbl 1292.47016
[11] Diaconis, P., Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture, Bull. Amer. Math. Soc., 40, 155-178 (2003) · Zbl 1161.15302
[12] Grenander, U.; Szegő, G., Toeplitz Forms and Their Applications (1958), University of California Press: University of California Press Berkeley · Zbl 0080.09501
[13] Kac, M.; Murdock, W. L.; Szegő, G., On the eigenvalues of certain Hermitian forms, J. Rat. Mech. Anal., 2, 787-800 (1953) · Zbl 0051.30302
[14] Novosel’tsev, A. Yu.; Simonenko, I. B., Dependence of the asymptotics of extreme eigenvalues of truncated Toeplitz matrices on the rate of attaining an extremum by a symbol, St. Petersburg Math. J., 16, 713-718 (2005) · Zbl 1091.47024
[15] Parter, S. V., Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer. Math. Soc., 99, 153-192 (1961) · Zbl 0099.32403
[16] Parter, S. V., On the extreme eigenvalues of Toeplitz matrices, Trans. Amer. Math. Soc., 100, 263-276 (1961) · Zbl 0118.09802
[17] Schmidt, P.; Spitzer, F., The Toeplitz matrices of an arbitrary Laurent polynomial, Math. Scand., 8, 15-28 (1960) · Zbl 0101.09203
[18] Serra, S., On the extreme spectral properties of Toeplitz matrices generated by \(L^1\) functions with several minima/maxima, BIT, 36, 135-142 (1996) · Zbl 0851.15008
[19] Serra, S., On the extreme eigenvalues of Hermitian (block) Toeplitz matrices, Linear Algebra Appl., 270, 109-129 (1998) · Zbl 0892.15014
[20] Trench, W. F., Asymptotic distribution of the spectra of a class of generalized Kac-Murdock-Szegő matrices, Linear Algebra Appl., 294, 181-192 (1999) · Zbl 0942.15006
[21] Tyrtyshnikov, E. E.; Zamarashkin, N. L., Toeplitz eigenvalues for Radon measures, Linear Algebra Appl., 343/344, 345-354 (2002) · Zbl 0995.15021
[22] Widom, H., On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc., 88, 491-522 (1958) · Zbl 0101.09202
[23] Widom, H., Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index, Oper. Theory Adv. Appl., 48, 387-421 (1990) · Zbl 0733.15003
[24] Zamarashkin, N. L.; Tyrtyshnikov, E. E., Distribution of the eigenvalues and singular numbers of Toeplitz matrices under weakened requirements on the generating function, Sb. Math., 188, 1191-1201 (1997) · Zbl 0898.15007
[25] Zizler, P.; Zuidwijk, R. A.; Taylor, K. F.; Arimoto, S., A finer aspect of eigenvalue distribution of selfadjoint band Toeplitz matrices, SIAM J. Matrix Anal. Appl., 24, 59-67 (2002) · Zbl 1020.15007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.