Huber, Markus Q.; Mitter, Mario CrasyDSE: a framework for solving Dyson-Schwinger equations. (English) Zbl 1302.81004 Comput. Phys. Commun. 183, No. 11, 2441-2457 (2012). Summary: Dyson-Schwinger equations are important tools for non-perturbative analyses of quantum field theories. For example, they are very useful for investigations in quantum chromodynamics and related theories. However, sometimes progress is impeded by the complexity of the equations. Thus automating parts of the calculations will certainly be helpful in future investigations. In this article we present a framework for such an automation based on a \(C++\) code that can deal with a large number of Green functions. Since also the creation of the expressions for the integrals of the Dyson-Schwinger equations needs to be automated, we defer this task to a \(Mathematica\) notebook. We illustrate the complete workflow with an example from Yang-Mills theory coupled to a fundamental scalar field that has been investigated recently. As a second example we calculate the propagators of pure Yang-Mills theory. Our code can serve as a basis for many further investigations where the equations are too complicated to tackle by hand. It also can easily be combined with \(DoFun\), a program for the derivation of Dyson-Schwinger equations. Cited in 3 Documents MSC: 81-04 Software, source code, etc. for problems pertaining to quantum theory 81-08 Computational methods for problems pertaining to quantum theory 81T80 Simulation and numerical modelling (quantum field theory) (MSC2010) 81P40 Quantum coherence, entanglement, quantum correlations 81T13 Yang-Mills and other gauge theories in quantum field theory Keywords:Dyson-Schwinger equations; correlation functions; quantum field theory Software:CrasyDSE; Mathematica PDF BibTeX XML Cite \textit{M. Q. Huber} and \textit{M. Mitter}, Comput. Phys. Commun. 183, No. 11, 2441--2457 (2012; Zbl 1302.81004) Full Text: DOI arXiv References: [1] Berges, J.; Tetradis, N.; Wetterich, C., Phys. Rep., 363, 223-386 (2002) [2] Pawlowski, J. M., Ann. Physics, 322, 2831-2915 (2007) [4] Rosten, O. J., Phys. Rep., 511, 177-272 (2012), arXiv:1003.1366 [hep-th] [5] Alkofer, R.; von Smekal, L., Phys. Rep., 353, 281 (2001) [6] Alkofer, R.; Huber, M. Q.; Schwenzer, K., Comput. Phys. Commun., 180, 965-976 (2009), arXiv:0808.2939 [hep-th] [7] Binosi, D.; Papavassiliou, J., Phys. Rep., 479, 1-152 (2009), arXiv:0909.2536 [hep-ph] [8] Roberts, C. D., [nucl-th] [9] Berges, J., Phys. Rev. D, 70, 105010 (2004) [10] von Smekal, L.; Hauck, A.; Alkofer, R., Ann. Phys., 267, 1 (1998) [11] Fischer, C. S.; Alkofer, R., Phys. Rev. D, 67, 094020 (2003) [12] Fischer, C. S.; Maas, A.; Pawlowski, J. M., Ann. Physics, 324, 2408-2437 (2009), arXiv:0810.1987 [hep-ph] [13] Huber, M. Q.; Schwenzer, K.; Alkofer, R., Eur. Phys. J. C, 68, 581-600 (2010), arXiv:0904.1873 [hep-th] [14] von Smekal, L.; Alkofer, R.; Hauck, A., Phys. Rev. Lett., 79, 3591-3594 (1997) [15] Hauck, A.; von Smekal, L.; Alkofer, R., Comput. Phys. Commun., 112, 166 (1998) [16] Wolfram, S., The Mathematica Book (2004), Wolfram Media and Cambridge University Press [17] Huber, M. Q.; Braun, J., Comput. Phys. Commun., 183, 1290-1320 (2012), arXiv:1102.5307 [hep-th] [19] Huber, M. Q.; Alkofer, R.; Sorella, S. P., Phys. Rev. D, 81, 065003 (2010), arXiv:0910.5604 [hep-th] [20] Huber, M. Q.; Alkofer, R.; Sorella, S. P., AIP Conf. Proc., 1343, 158-160 (2011), arXiv:1010.4802 [hep-th] [21] Huber, M. Q.; Alkofer, R.; Schwenzer, K., PoS FacesQCD, 001 (2010), arXiv: 1103.0236 [hep-th] [22] Fischbacher, T.; Synatschke-Czerwonka, F., [physics.comp-ph] [23] Bogoliubov, N.; Parasiuk, O., Acta Math., 97, 227-266 (1957) [24] Zimmermann, W., Commun. Math. Phys., 15, 208-234 (1969) [25] Hepp, K., Commun. Math. Phys., 2, 301-326 (1966) [27] Atkinson, D.; Bloch, J. C.R., Phys. Rev. D, 58, 094036 (1998) [28] Maas, A., Comput. Phys. Commun., 175, 167-179 (2006) [31] Fischer, C. S.; Alkofer, R., Phys. Lett. B, 536, 177-184 (2002) [32] Ball, J. S.; Chiu, T.-W., Phys. Rev. D, 22, 2542 (1980) [33] Maris, P.; Roberts, C. D., Phys. Rep. C, 56, 3369-3383 (1997), arXiv:nucl-th/9708029 [nucl-th] [34] Maris, P.; Tandy, P. C., Phys. Rev. C, 60, 055214 (1999), arXiv:nucl-th/9905056 [nucl-th] [35] Alkofer, R.; Watson, P.; Weigel, H., Phys. Rev. D, 65, 094026 (2002), arXiv:hep-ph/0202053 [hep-ph] [36] Fischer, C. S.; Müller, J. A., Phys. Rev. D, 80, 074029 (2009), arXiv:0908.0007 [hep-ph] [37] Alkofer, R.; Fischer, C. S.; Llanes-Estrada, F. J.; Schwenzer, K., Ann. Physics, 324, 106-172 (2009), arXiv:0804.3042 [hep-ph] [38] Fister, L.; Alkofer, R.; Schwenzer, K., Phys. Lett. B, 688, 237-243 (2010), arXiv:1003.1668 [hep-th] [39] Alkofer, R.; Fister, L.; Maas, A.; Macher, V., AIP Conf. Proc., 1343, 179-181 (2011), arXiv:1011.5831 [hep-ph] [40] Macher, V.; Maas, A.; Alkofer, R., [hep-ph] [42] Maas, A., PoS FACESQCD, 033 (2010), arXiv:1102.0901 [hep-lat] [43] Marciano, W. J.; Pagels, H., Phys. Rep., 36, 137 (1978) [44] Aguilar, A.; Binosi, D.; Papavassiliou, J., Phys. Rev. D, 78, 025010 (2008), arXiv:0802.1870 [hep-ph] [46] Fischer, C. S.; Pawlowski, J. M., Phys. Rev. D, 80, 025023 (2009), arXiv:0903.2193 [hep-th] [47] Cucchieri, A.; Maas, A.; Mendes, T., Phys. Rev. D, 77, 094510 (2008), arXiv:0803.1798 [hep-lat] [48] Lerche, C.; von Smekal, L., Phys. Rev. D, 65, 125006 (2002) [49] Schleifenbaum, W.; Maas, A.; Wambach, J.; Alkofer, R., Phys. Rev. D, 72, 014017 (2005) [50] Pennington, M.; Wilson, D., Phys. Rev. D, 84, 119901 (2011), arXiv:1109.2117 [hep-ph] [51] Boucaud, P.; Leroy, J.-P.; Yaouanc, A. L.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J., J. High Energy Phys., 0806, 012 (2008), arXiv:0801.2721 [hep-ph] [52] Zwanziger, D., Phys. Rev. D, 65, 094039 (2002) [53] Alkofer, R.; Fischer, C.; von Smekal, L., Acta Phys. Slovaca, 52, 191 (2002), arXiv:hep-ph/0205125 [hep-ph] [54] von Smekal, L.; Maltman, K.; Sternbeck, A., Phys. Lett. B, 681, 336-342 (2009), arXiv:0903.1696 [hep-ph] [55] Alkofer, R.; Fischer, C. S.; Llanes-Estrada, F. J., Phys. Lett. B, 611, 279-288 (2005) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.