Direct test of the gauge-gravity correspondence for Matrix theory correlation functions. (English) Zbl 1306.81107

Summary: We study correlation functions in (0 + 1)-dimensional maximally supersym-metric U(\(N\)) Yang-Mills theory, which was proposed by Banks et al. as a non-perturbative definition of 11-dimensional M-theory in the infinite-momentum frame. We perform first-principle calculations using Monte Carlo simulations, and compare the results against the predictions obtained previously based on the gauge-gravity correspondence from 10 dimensions. After providing a self-contained review on these predictions, we present clear evidence that the predictions in the large-\(N\) limit actually hold even at small \(N\) such as \(N =2\) and 3. The predicted behavior seems to continue to the far infrared regime, which goes beyond the naive range of validity of the 10D supergravity analysis. This suggests that the correlation functions also contain important information on the M-theory limit.


81T13 Yang-Mills and other gauge theories in quantum field theory
81V17 Gravitational interaction in quantum theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
83E50 Supergravity
83E15 Kaluza-Klein and other higher-dimensional theories
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
65C05 Monte Carlo methods
Full Text: DOI arXiv


[1] T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].
[2] W. Taylor, M(atrix) theory: matrix quantum mechanics as a fundamental theory, Rev. Mod. Phys.73 (2001) 419 [hep-th/0101126] [INSPIRE]. · Zbl 1205.81015
[3] E. Witten, String theory dynamics in various dimensions, Nucl. Phys.B 443 (1995) 85 [hep-th/9503124] [INSPIRE]. · Zbl 0990.81663
[4] C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys.B 438 (1995) 109 [hep-th/9410167] [INSPIRE]. · Zbl 1052.83532
[5] E. Witten, Bound states of strings and p-branes, Nucl. Phys.B 460 (1996) 335 [hep-th/9510135] [INSPIRE]. · Zbl 1003.81527
[6] B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys.B 305 (1988) 545 [INSPIRE].
[7] Y. Okawa and T. Yoneya, Multi-body interactions of D-particles in supergravity and matrix theory, Nucl. Phys.B 538 (1999) 67 [hep-th/9806108] [INSPIRE]. · Zbl 0940.83026
[8] Y. Okawa and T. Yoneya, Equations of motion and Galilei invariance in D-particle dynamics, Nucl. Phys.B 541 (1999) 163 [hep-th/9808188] [INSPIRE]. · Zbl 0947.81069
[9] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1133] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[10] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev.D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
[11] A. Jevicki and T. Yoneya, Space-time uncertainty principle and conformal symmetry in D-particle dynamics, Nucl. Phys.B 535 (1998) 335 [hep-th/9805069] [INSPIRE]. · Zbl 1080.81602
[12] A. Jevicki, Y. Kazama and T. Yoneya, Generalized conformal symmetry in D-brane matrix models, Phys. Rev.D 59 (1999) 066001 [hep-th/9810146] [INSPIRE].
[13] Y. Sekino and T. Yoneya, Generalized AdS/CFT correspondence for matrix theory in the large-N limit, Nucl. Phys.B 570 (2000) 174 [hep-th/9907029] [INSPIRE]. · Zbl 0951.81057
[14] Y. Sekino, Supercurrents in matrix theory and the generalized AdS/CFT correspondence, Nucl. Phys.B 602 (2001) 147 [hep-th/0011122] [INSPIRE]. · Zbl 1097.81728
[15] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126
[16] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048
[17] D.N. Kabat and W. Taylor, Linearized supergravity from matrix theory, Phys. Lett.B 426 (1998) 297 [hep-th/9712185] [INSPIRE]. · Zbl 1049.83533
[18] W. Taylor and M. Van Raamsdonk, Supergravity currents and linearized interactions for matrix theory configurations with fermionic backgrounds, JHEP04 (1999) 013 [hep-th/9812239] [INSPIRE].
[19] W. Taylor and M. Van Raamsdonk, Multiple D0-branes in weakly curved backgrounds, Nucl. Phys.B 558 (1999) 63 [hep-th/9904095] [INSPIRE]. · Zbl 1068.81582
[20] T. Yoneya, Generalized conformal symmetry and oblique AdS/CFT correspondence for matrix theory, Class. Quant. Grav.17 (2000) 1307 [hep-th/9908153] [INSPIRE]. · Zbl 0952.81029
[21] P. Yi, Witten index and threshold bound states of D-branes, Nucl. Phys.B 505 (1997) 307 [hep-th/9704098] [INSPIRE]. · Zbl 0925.58105
[22] S. Sethi and M. Stern, D-brane bound states redux, Commun. Math. Phys.194 (1998) 675 [hep-th/9705046] [INSPIRE]. · Zbl 0911.53052
[23] G.W. Moore, N. Nekrasov and S. Shatashvili, D-particle bound states and generalized instantons, Commun. Math. Phys.209 (2000) 77 [hep-th/9803265] [INSPIRE]. · Zbl 0971.81162
[24] M. Asano, Y. Sekino and T. Yoneya, PP wave holography for Dp-brane backgrounds, Nucl. Phys.B 678 (2004) 197 [hep-th/0308024] [INSPIRE]. · Zbl 1097.81701
[25] M. Asano and Y. Sekino, Large-N limit of SYM theories with 16 supercharges from superstrings on Dp-brane backgrounds, Nucl. Phys.B 705 (2005) 33 [hep-th/0405203] [INSPIRE]. · Zbl 1119.81359
[26] M. Asano, Stringy effect of the holographic correspondence for Dp-brane backgrounds, JHEP12 (2004) 029 [hep-th/0408030] [INSPIRE].
[27] M. Hanada, J. Nishimura and S. Takeuchi, Non-lattice simulation for supersymmetric gauge theories in one dimension, Phys. Rev. Lett.99 (2007) 161602 [arXiv:0706.1647] [INSPIRE].
[28] K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett.100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].
[29] M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].
[30] M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 181602 [arXiv:0811.2081] [INSPIRE].
[31] S. Catterall and T. Wiseman, Towards lattice simulation of the gauge theory duals to black holes and hot strings, JHEP12 (2007) 104 [arXiv:0706.3518] [INSPIRE]. · Zbl 1246.81112
[32] S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev.D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].
[33] S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP04 (2010) 077 [arXiv:0909.4947] [INSPIRE]. · Zbl 1272.83046
[34] A. Smilga, Comments on thermodynamics of supersymmetric matrix models, Nucl. Phys.B 818 (2009) 101 [arXiv:0812.4753] [INSPIRE]. · Zbl 1194.81218
[35] M. Hanada, S. Matsuura, J. Nishimura and D. Robles-Llana, Nonperturbative studies of supersymmetric matrix quantum mechanics with 4 and 8 supercharges at finite temperature,JHEP02 (2011) 060 [arXiv:1012.2913] [INSPIRE]. · Zbl 1294.81109
[36] M. Campostrini and J. Wosiek, High precision study of the structure of D = 4 supersymmetric Yang-Mills quantum mechanics, Nucl. Phys.B 703 (2004) 454 [hep-th/0407021] [INSPIRE]. · Zbl 1198.81172
[37] J. Hiller, O. Lunin, S. Pinsky and U. Trittmann, Towards a SDLCQ test of the Maldacena conjecture, Phys. Lett.B 482 (2000) 409 [hep-th/0003249] [INSPIRE]. · Zbl 1028.81515
[38] J.R. Hiller, S.S. Pinsky, N. Salwen and U. Trittmann, Direct evidence for the Maldacena conjecture for \(\mathcal{N} \)= (8, 8) super Yang-Mills theory in 1 + 1 dimensions, Phys. Lett.B 624 (2005) 105 [hep-th/0506225] [INSPIRE]. · Zbl 1247.81472
[39] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Monte Carlo studies of matrix theory correlation functions, Phys. Rev. Lett.104 (2010) 151601 [arXiv:0911.1623] [INSPIRE].
[40] T. Yoneya, String theory and space-time uncertainty principle, Prog. Theor. Phys.103 (2000) 1081 [hep-th/0004074] [INSPIRE].
[41] G.T. Horowitz and A. Strominger, Black strings and p-branes, Nucl. Phys.B 360 (1991) 197 [INSPIRE].
[42] G. Gibbons and K. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys.B 298 (1988) 741 [INSPIRE].
[43] T. Azeyanagi, M. Hanada, H. Kawai and Y. Matsuo, Worldsheet analysis of gauge/gravity dualities, Nucl. Phys.B 816 (2009) 278 [arXiv:0812.1453] [INSPIRE]. · Zbl 1194.83091
[44] I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP09 (2008) 094 [arXiv:0807.3324] [INSPIRE]. · Zbl 1245.81187
[45] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from \(\mathcal{N} =4\) super Yang-Mills, JHEP04 (2002) 013 [hep-th/0202021] [INSPIRE].
[46] S. Dobashi, H. Shimada and T. Yoneya, Holographic reformulation of string theory on AdS5× S5background in the pp wave limit, Nucl. Phys.B 665 (2003) 94 [hep-th/0209251] [INSPIRE]. · Zbl 1038.83038
[47] T. Yoneya, Holography in the large J limit of AdS/CFT correspondence and its applications, Prog. Theor. Phys. Suppl.164 (2007) 82 [hep-th/0607046] [INSPIRE]. · Zbl 1111.81329
[48] S. Dobashi and T. Yoneya, Resolving the holography in the plane-wave limit of AdS/CFT correspondence, Nucl. Phys.B 711 (2005) 3 [hep-th/0406225] [INSPIRE]. · Zbl 1109.83314
[49] A. Miwa and T. Yoneya, Holography of Wilson-loop expectation values with local operator insertions, JHEP12 (2006) 060 [hep-th/0609007] [INSPIRE]. · Zbl 1226.81215
[50] A. Tsuji, Holography of Wilson loop correlator and spinning strings, Prog. Theor. Phys.117 (2007) 557 [hep-th/0606030] [INSPIRE]. · Zbl 1129.81075
[51] S. Catterall and S. Karamov, Testing a Fourier accelerated hybrid Monte Carlo algorithm, Phys. Lett.B 528 (2002) 301 [hep-lat/0112025] [INSPIRE]. · Zbl 0985.81127
[52] M. Clark and A. Kennedy, The RHMC algorithm for two flavors of dynamical staggered fermions, Nucl. Phys. Proc. Suppl. 129 (2004) 850 [hep-lat/0309084] [INSPIRE].
[53] D. Berenstein and R. Cotta, A Monte-Carlo study of the AdS/CFT correspondence: an exploration of quantum gravity effects, JHEP04 (2007) 071 [hep-th/0702090] [INSPIRE].
[54] D. Berenstein, R. Cotta and R. Leonardi, Numerical tests of AdS/CFT at strong coupling, Phys. Rev.D 78 (2008) 025008 [arXiv:0801.2739] [INSPIRE].
[55] D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP01 (2006) 125 [hep-th/0507203] [INSPIRE].
[56] J. Nishimura, Non-lattice simulation of supersymmetric gauge theories as a probe to quantum black holes and strings, PoSLAT2009 (2009) 016 [arXiv:0912.0327] [INSPIRE].
[57] M. Honda, G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Supersymmetry non-renormalization theorem from a computer and the AdS/CFT correspondence, PoS LATTICE2010 (2010) 253 [arXiv:1011.3904] [INSPIRE].
[58] T. Ishii, G. Ishiki, S. Shimasaki and A. Tsuchiya, \( \mathcal{N} = 4\) super Yang-Mills from the plane wave matrix model, Phys. Rev.D 78 (2008) 106001 [arXiv:0807.2352] [INSPIRE].
[59] G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Deconfinement phase transition in \(\mathcal{N} =4\) super Yang-Mills theory on R × S3 from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 111601 [arXiv:0810.2884] [INSPIRE].
[60] G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Testing a novel large-N reduction for \(\mathcal{N} =4\) super Yang-Mills theory on R × S3, JHEP09 (2009)029 [arXiv:0907.1488] [INSPIRE].
[61] D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP09 (2005) 042 [hep-lat/0503039] [INSPIRE].
[62] M. Ünsal, Supersymmetric deformations of type IIB matrix model as matrix regularization of N =4 SYM,JHEP04 (2006) 002 [hep-th/0510004] [INSPIRE].
[63] J.W. Elliott, J. Giedt and G.D. Moore, Lattice four-dimensional \(\mathcal{N} = 4\) SYM is practical, Phys. Rev.D 78 (2008) 081701 [arXiv:0806.0013] [INSPIRE].
[64] S. Catterall, First results from simulations of supersymmetric lattices, JHEP01 (2009) 040 [arXiv:0811.1203] [INSPIRE].
[65] J. Giedt, Progress in four-dimensional lattice supersymmetry, Int. J. Mod. Phys.A 24 (2009) 4045 [arXiv:0903.2443] [INSPIRE]. · Zbl 1175.81156
[66] S. Catterall, E. Dzienkowski, J. Giedt, A. Joseph and R. Wells, Perturbative renormalization of lattice \(\mathcal{N} = 4\) super Yang-Mills theory, JHEP04 (2011) 074 [arXiv:1102.1725] [INSPIRE]. · Zbl 1250.81069
[67] M. Hanada, S. Matsuura and F. Sugino, Two-dimensional lattice for four-dimensional \(\mathcal{N} = 4\) supersymmetric Yang-Mills, Prog. Theor. Phys.126 (2011) 597 [arXiv:1004.5513] [INSPIRE]. · Zbl 1248.81140
[68] M. Hanada, A proposal of a fine tuning free formulation of 4d \(\mathcal{N} = 4\) super Yang-Mills, JHEP 11 (2010) 112 [arXiv:1009.0901] [INSPIRE]. · Zbl 1294.81108
[69] O. Aharony, J. Marsano, S. Minwalla and T. Wiseman, Black hole-black string phase transitions in thermal 1 + 1 dimensional supersymmetric Yang-Mills theory on a circle, Class. Quant. Grav.21 (2004) 5169 [hep-th/0406210] [INSPIRE]. · Zbl 1062.83065
[70] N. Kawahara, J. Nishimura and S. Takeuchi, Phase structure of matrix quantum mechanics at finite temperature, JHEP10 (2007) 097 [arXiv:0706.3517] [INSPIRE].
[71] G. Mandal, M. Mahato and T. Morita, Phases of one dimensional large-N gauge theory in a 1/D expansion, JHEP02 (2010) 034 [arXiv:0910.4526] [INSPIRE]. · Zbl 1270.81184
[72] I. Kanamori, H. Suzuki and F. Sugino, Euclidean lattice simulation for dynamical supersymmetry breaking, Phys. Rev.D 77 (2008) 091502 [arXiv:0711.2099] [INSPIRE].
[73] I. Kanamori, F. Sugino and H. Suzuki, Observing dynamical supersymmetry breaking with Euclidean lattice simulations, Prog. Theor. Phys.119 (2008) 797 [arXiv:0711.2132] [INSPIRE]. · Zbl 1146.81031
[74] I. Kanamori and H. Suzuki, Restoration of supersymmetry on the lattice: two-dimensional \(\mathcal{N} \)= (2,2) supersymmetric Yang-Mills theory, Nucl. Phys.B 811 (2009) 420 [arXiv:0809.2856] [INSPIRE]. · Zbl 1194.81233
[75] I. Kanamori and H. Suzuki, Some physics of the two-dimensional \(\mathcal{N} \)= (2, 2) supersymmetric Yang-Mills theory: lattice Monte Carlo study, Phys. Lett.B 672 (2009) 307 [arXiv:0811.2851] [INSPIRE].
[76] M. Hanada and I. Kanamori, Lattice study of two-dimensional \(\mathcal{N} \)= (2, 2) super Yang-Mills at large N , Phys. Rev.D 80 (2009) 065014 [arXiv:0907.4966] [INSPIRE].
[77] M. Hanada and I. Kanamori, Absence of sign problem in two-dimensional \(\mathcal{N} \)= (2, 2) super Yang-Mills on lattice, JHEP01 (2011) 058 [arXiv:1010.2948] [INSPIRE]. · Zbl 1214.81155
[78] S. Catterall, A. Joseph and T. Wiseman, Thermal phases of D1-branes on a circle from lattice super Yang-Mills, JHEP12 (2010) 022 [arXiv:1008.4964] [INSPIRE]. · Zbl 1294.81176
[79] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys.B 500 (1997) 43 [hep-th/9703030] [INSPIRE]. · Zbl 0934.81044
[80] Y. Sekino and T. Yoneya, From supermembrane to matrix string, Nucl. Phys.B 619 (2001) 22 [hep-th/0108176] [INSPIRE]. · Zbl 0992.81065
[81] S. Duane, A. Kennedy, B. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett.B 195 (1987) 216 [INSPIRE].
[82] J. Ambjørn, K. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, Large-N dynamics of dimensionally reduced 4d SU(N ) super Yang-Mills theory, JHEP07 (2000) 013 [hep-th/0003208] [INSPIRE]. · Zbl 0989.81068
[83] J. Ambjørn, K. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, Monte Carlo studies of the IIB matrix model at large N , JHEP07 (2000) 011 [hep-th/0005147] [INSPIRE]. · Zbl 0990.81629
[84] M.A. Clark and A.D. Kennedy, http://www.ph.ed.ac.uk/∼mike/remez,2005.
[85] B. Jegerlehner, Krylov space solvers for shifted linear systems, hep-lat/9612014 [INSPIRE].
[86] K. Anagnostopoulos and J. Nishimura, New approach to the complex action problem and its application to a nonperturbative study of superstring theory, Phys. Rev.D 66 (2002) 106008 [hep-th/0108041] [INSPIRE].
[87] J. Ambjørn, K. Anagnostopoulos, J. Nishimura and J. Verbaarschot, The factorization method for systems with a complex action: a test in random matrix theory for finite density QCD, JHEP10 (2002) 062 [hep-lat/0208025] [INSPIRE].
[88] K.N. Anagnostopoulos, T. Azuma and J. Nishimura, A general approach to the sign problem: the factorization method with multiple observables, Phys. Rev.D 83 (2011) 054504 [arXiv:1009.4504] [INSPIRE].
[89] K.N. Anagnostopoulos, T. Azuma and J. Nishimura, A practical solution to the sign problem in a matrix model for dynamical compactification, JHEP10 (2011) 126 [arXiv:1108.1534] [INSPIRE]. · Zbl 1303.81138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.