×

On the differential structure of metric measure spaces and applications. (English) Zbl 1325.53054

Mem. Am. Math. Soc. 1113, v, 91 p. (2015).
Summary: The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like \(\Delta g=\mu\), where \(g\) is a function and \(\mu\) is a measure. (iii) To show that on spaces with Ricci curvature bounded from below and dimension bounded from above, the Laplacian of the distance function is always a measure and that this measure has the standard sharp comparison properties. This result requires an additional assumption on the space, which reduces to strict convexity of the norm in the case of smooth Finsler structures and is always satisfied on spaces with linear Laplacian, a situation which is analyzed in detail.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
30L99 Analysis on metric spaces
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
49Q15 Geometric measure and integration theory, integral and normal currents in optimization
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Luigi Ambrosio and Simone Di Marino, BV functions and equivalence of weak total variations in metric measure spaces, preprint, avaliable at http://cvgmt.sns.it/paper/1860/ (2012). · Zbl 1302.26012
[2] Luigi Ambrosio, Nicola Gigli, Andrea Mondino, and Tapio Rajala, Riemannian ricci curvature lower bounds in metric measure spaces with \sigma -finite measure, Accepted at Trans. Amer. Math. Soc., arXiv:1207.4924, 2012. · Zbl 1317.53060
[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. · Zbl 1145.35001
[4] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Metric measure spaces with riemannian Ricci curvature bounded from below, Accepted at Duke MAth. J., arXiv:1109.0222, 2011. · Zbl 1304.35310
[5] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Heat flow and calculus on metric measure spaces with Ricci curvature bounded below-the compact case, Boll. Unione Mat. Ital. (9) 5 (2012), no. 3, 575-629. · Zbl 1288.58016
[6] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam. 29 (2013), no. 3, 969-996. · Zbl 1287.46027 · doi:10.4171/RMI/746
[7] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math. 195 (2014), no. 2, 289-391. · Zbl 1312.53056 · doi:10.1007/s00222-013-0456-1
[8] Dominique Bakry, Functional inequalities for Markov semigroups, Probability measures on groups: recent directions and trends, Tata Inst. Fund. Res., Mumbai, 2006, pp. 91-147. · Zbl 1148.60057
[9] Anders Björn and Jana Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical Society (EMS), Zürich, 2011. · Zbl 1231.31001
[10] V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. · Zbl 1120.28001
[11] Kathrin Bacher and Karl-Theodor Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal. 259 (2010), no. 1, 28-56. · Zbl 1196.53027 · doi:10.1016/j.jfa.2010.03.024
[12] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406-480. · Zbl 0902.53034
[13] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13-35. · Zbl 1027.53042
[14] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1, 37-74. · Zbl 1027.53043
[15] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428-517. · Zbl 0942.58018 · doi:10.1007/s000390050094
[16] Jeff Cheeger and Bruce Kleiner, Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property, Geom. Funct. Anal. 19 (2009), no. 4, 1017-1028. · Zbl 1200.58007 · doi:10.1007/s00039-009-0030-6
[17] Fabio Cavalletti and Karl-Theodor Sturm, Local curvature-dimension condition implies measure-contraction property, J. Funct. Anal. 262 (2012), no. 12, 5110-5127. · Zbl 1244.53050 · doi:10.1016/j.jfa.2012.02.015
[18] Alessio Figalli and Nicola Gigli, Local semiconvexity of Kantorovich potentials on non-compact manifolds, ESAIM Control Optim. Calc. Var. 17 (2011), no. 3, 648-653. · Zbl 1228.49047 · doi:10.1051/cocv/2010011
[19] Nicola Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differential Equations 39 (2010), no. 1-2, 101-120. · Zbl 1200.35178 · doi:10.1007/s00526-009-0303-9
[20] Nicola Gigli, On the relation between the curvature dimension condition and Bochner inequality, Unpublished paper, available at http://cvgmt.sns.it/person/226/ (2012). · Zbl 1257.53055
[21] Nicola Gigli, The splitting theorem in non-smooth context, Preprint, arXiv:1302.5555, 2013. · Zbl 1283.31002
[22] Nicola Gigli, Kazumasa Kuwada, and Shin-Ichi Ohta, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math. 66 (2013), no. 3, 307-331. · Zbl 1267.58014 · doi:10.1002/cpa.21431
[23] Nicola Gigli and Andrea Mondino, A PDE approach to nonlinear potential theory in metric measure spaces, J. Math. Pures Appl. (9) 100 (2013), no. 4, 505-534. · Zbl 1283.31002 · doi:10.1016/j.matpur.2013.01.011
[24] Juha Heinonen, Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 2, 163-232. · Zbl 1124.28003 · doi:10.1090/S0273-0979-07-01140-8
[25] Pekka Koskela and Paul MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), no. 1, 1-17. · Zbl 0918.30011
[26] Kazuhiro Kuwae, Yoshiroh Machigashira, and Takashi Shioya, Beginning of analysis on Alexandrov spaces, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 275-284. · Zbl 0990.53069 · doi:10.1090/conm/258/1778111
[27] Kazumasa Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal. 258 (2010), no. 11, 3758-3774. · Zbl 1194.53032 · doi:10.1016/j.jfa.2010.01.010
[28] Stefano Lisini, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations 28 (2007), no. 1, 85-120. · Zbl 1132.60004 · doi:10.1007/s00526-006-0032-2
[29] John Lott and Cédric Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal. 245 (2007), no. 1, 311-333. · Zbl 1119.53028 · doi:10.1016/j.jfa.2006.10.018
[30] John Lott and Cédric Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903-991. · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[31] Shin-Ichi Ohta, Products, cones, and suspensions of spaces with the measure contraction property, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 225-236. · Zbl 1130.53052 · doi:10.1112/jlms/jdm057
[32] Shin-ichi Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), no. 2, 211-249. · Zbl 1175.49044 · doi:10.1007/s00526-009-0227-4
[33] Shin-ichi Ohta, Splitting theorems for Finsler manifolds of nonnegative Ricci curvature, Preprint, arXiv:1203.0079, 2012. · Zbl 1314.53131
[34] Yukio Otsu and Takashi Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), no. 3, 629-658. · Zbl 0808.53061
[35] Shin-Ichi Ohta and Karl-Theodor Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), no. 10, 1386-1433. · Zbl 1176.58012 · doi:10.1002/cpa.20273
[36] Shin-Ichi Ohta and Karl-Theodor Sturm, Bochner-Weitzenboeck formula and Li-Yau estimates on Finsler manifolds, Preprint, arXiv:1105.0983, 2011. · Zbl 1321.53089
[37] Shin-ichi Ohta and Karl-Theodor Sturm, Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal. 204 (2012), no. 3, 917-944. · Zbl 1257.53098 · doi:10.1007/s00205-012-0493-8
[38] G. Perelman, Dc structure on Alexandrov Space, Unpublished preprint, available online at http://www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf.
[39] Anton Petrunin, Harmonic functions on Alexandrov spaces and their applications, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 135-141. · Zbl 1071.53527 · doi:10.1090/S1079-6762-03-00120-3
[40] Tapio Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal. 263 (2012), no. 4, 896-924. · Zbl 1260.53076 · doi:10.1016/j.jfa.2012.05.006
[41] Tapio Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations 44 (2012), no. 3-4, 477-494. · Zbl 1250.53040 · doi:10.1007/s00526-011-0442-7
[42] Giuseppe Savaré, Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds, C. R. Math. Acad. Sci. Paris 345 (2007), no. 3, 151-154 (English, with English and French summaries). · Zbl 1125.53064 · doi:10.1016/j.crma.2007.06.018
[43] Giuseppe Savaré, Self-improvement of the Bakry-émery condition and Wasserstein contraction of the heat flow in {RCD(K, \infty )} metric measure spaces, Preprint, 2013. · Zbl 1275.49087
[44] Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243-279. · Zbl 0974.46038 · doi:10.4171/RMI/275
[45] Zhongmin Shen, The non-linear Laplacian for Finsler manifolds, The theory of Finslerian Laplacians and applications, Math. Appl., vol. 459, Kluwer Acad. Publ., Dordrecht, 1998, pp. 187-198. · Zbl 0930.53047 · doi:10.1007/978-94-011-5282-2_12
[46] Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65-131. · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[47] Karl-Theodor Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133-177. · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[48] Cédric Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. · Zbl 1156.53003
[49] Nik Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal. 178 (2000), no. 1, 64-112. · Zbl 0979.46035 · doi:10.1006/jfan.2000.3637
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.