×

A weak Galerkin finite element method for the Maxwell equations. (English) Zbl 1327.65220

Summary: This paper introduces a numerical scheme for the time-harmonic Maxwell equations by using weak Galerkin (WG) finite element methods. The WG finite element method is based on two operators: discrete weak curl and discrete weak gradient, with appropriately defined stabilizations that enforce a weak continuity of the approximating functions. This WG method is highly flexible by allowing the use of discontinuous approximating functions on arbitrary shape of polyhedra and, at the same time, is parameter free. Optimal-order of convergence is established for the WG approximations in various discrete norms which are either \(H^1\)-like or \(L^2\) and \(L^2\)-like. An effective implementation of the WG method is developed through variable reduction by following a Schur-complement approach, yielding a system of linear equations involving unknowns associated with element boundaries only. Numerical results are presented to confirm the theory of convergence.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
35B45 A priori estimates in context of PDEs
35J50 Variational methods for elliptic systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bossavit, A.: Computational Electromagnetism. Academic Press, San Diego (1998) · Zbl 0945.78001
[2] Brenner, S., Li, F., Sung, L.: A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal. 42, 1190-1211 (2008) · Zbl 1168.65068 · doi:10.1137/060671760
[3] Brenner, S., Cui, J., Nan, Z., Sung, L.: Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations. Math. Comput. 81, 643-659 (2012) · Zbl 1274.78089 · doi:10.1090/S0025-5718-2011-02540-8
[4] Cai, W.: Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport. Cambridge University Press, New York (2013) · Zbl 1510.78001
[5] Cai, W.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)
[6] Houston, P., Perugia, I., Schotzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. Technical Report 02-16, University of Basel, Department of Mathematics, Basel, Switzerland (2002) · Zbl 1084.65115
[7] Houston, P.; Perugia, I.; Schotzau, D.; Brezzi, F. (ed.); Buffa, A. (ed.); Corsaro, S. (ed.); Murli, A. (ed.), hp-DGFEM for Maxwell’s equations, 785-794 (2003), Berlin · Zbl 1061.78012 · doi:10.1007/978-88-470-2089-4_71
[8] Houston, P., Perugia, I., Schotzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42, 434-459 (2004) · Zbl 1084.65115 · doi:10.1137/S003614290241790X
[9] Jin, J.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley, New York (2002) · Zbl 1001.78001
[10] Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003) · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[11] Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Partial Differ. Equ. 30, 1003-1029 (2014) · Zbl 1314.65151
[12] Nedelec, J.: Mixed finite elements in R3. Numer. Math. 35, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[13] Nedelec, J.: A new family of mixed finite elements in R3. Numer. Math. 50, 57-81 (1986) · Zbl 0625.65107 · doi:10.1007/BF01389668
[14] Perugia, I., Schotzau, D.: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72, 1179-1214 (2003) · Zbl 1084.78007 · doi:10.1090/S0025-5718-02-01471-0
[15] Perugia, I., Schotzau, D., Monk, P.: Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191, 4675-4697 (2002) · Zbl 1040.78011 · doi:10.1016/S0045-7825(02)00399-7
[16] Vardapetyan, L., Demkowicz, L.: hp-adaptive nite elements in electromagnetics. Comput. Methods Appl. Mech. Eng. 169, 331-344 (1999) · Zbl 0956.78013 · doi:10.1016/S0045-7825(98)00161-3
[17] Wang, C., Wang, J.: An efficient numerical scheme for the Biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput. Math. Appl. 68, 2314-2330 (2014) · Zbl 1361.35058
[18] Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103-115 (2013) · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[19] Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83, 2101-2126 (2014) · Zbl 1308.65202
[20] Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. arXiv:1302.2707v1 · Zbl 1382.76178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.