×

At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. (English) Zbl 1330.74006

Summary: Gabrio Piola’s scientific papers have been underestimated in mathematical physics literature. Indeed, a careful reading of them proves that they are original, deep and far-reaching. Actually, even if his contribution to the mechanical sciences is not completely ignored, one can undoubtedly say that the greatest part of his novel contributions to mechanics, although having provided a great impetus to and substantial influence on the work of many preeminent mechanicians, is in fact generally ignored. It has to be remarked that authors Capecchi and Ruta dedicated many efforts to the aim of unveiling the true value of Gabrio Piola as a scientist; however, some deep parts of his scientific results remain not yet sufficiently illustrated. Our aim is to prove that non-local and higher-gradient continuum mechanics were conceived already in Piola’s works and to try to explain the reasons for the unfortunate circumstance which caused the erasure of the memory of this aspect of Piola’s contribution. Some relevant differential relationships obtained in Piola (Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione, 1846) are carefully discussed, as they are still too often ignored in the continuum mechanics literature and can be considered the starting point of Levi-Civita’s theory of connection for Riemannian manifolds.

MSC:

74-03 History of mechanics of deformable solids
01A55 History of mathematics in the 19th century
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Quiligotti S, Acta Mech 160 pp 45– (2003) · Zbl 1064.74061
[2] Russo L, L’America dimenticata. I rapporti tra le civiltà e un errore di Tolomeo (2013)
[3] Russo L, The forgotten revolution (2003)
[4] Truesdell C, Handbuch der Physik 3 (1960)
[5] Truesdell C, Essays in the hystory of mechanics (1968)
[6] Capecchi D, Arch Hist Exact Sci 61 pp 303– (2007) · Zbl 1131.01010
[7] Piola G, Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione (1846)
[8] Piola G, Sull’applicazione de’ principj della meccanica analitica del Lagrange ai principali problemi (1825)
[9] Piola G, La meccanica de’ corpi naturalmente estesi: Trattata col calcolo delle variazioni (1833)
[10] Piola G, Nuova analisi per tutte le questioni della meccanica molecolare (1835)
[11] Piola G, Di un principio controverso della meccanica analitica di Lagrange e delle molteplici sue applicazioni (1856)
[12] Cosserat E, Théorie des corps deformables (1909)
[13] Bedford A, Research Notes in Mathematics 139, in: Hamilton’s principle in continuum mechanics (1985) · Zbl 0577.73001
[14] Berdichevsky V, Variational principles of continuum mechanics I: Fundamentals (2009) · Zbl 1183.49002
[15] Berdichevsky V, Variational principles of continuum mechanics II: Applications (2009) · Zbl 1189.49002
[16] Daher N, Acta Mech 60 pp 217– (1986) · Zbl 0594.73004
[17] Germain P, J Mec 12 pp 235– (1973)
[18] Germain P, SIAM J Appl Math 25 pp 556– (1973) · Zbl 0273.73061
[19] DOI: 10.1007/978-3-662-30257-6
[20] Maugin GA, Continuum Mech Thermodyn 25 pp 127– (2011) · Zbl 1343.74003
[21] DOI: 10.1007/BF00253945 · Zbl 0112.16805
[22] Toupin RA, Arch Rat Mech Anal 17 pp 85– (1964) · Zbl 0131.22001
[23] DOI: 10.1007/BF00253051 · Zbl 0133.17604
[24] Green AE, Proc R Soc Lond Ser A 284 pp 303– (1965)
[25] Green AE, Z Angew Math Phys 15 pp 290– (1964) · Zbl 0122.18403
[26] DOI: 10.1007/BF00281725 · Zbl 0244.73005
[27] Neff P, Int J Eng Sci 44 (8) pp 574– (2006) · Zbl 1213.74032
[28] Neff P, R Soc Edinburgh Proc A 136 (5) pp 997– (2006) · Zbl 1106.74010
[29] DOI: 10.1002/zamm.200800156 · Zbl 1157.74002
[30] Forest S, J Eng Mech 135 pp 117– (2009)
[31] Forest S, Comput Mater Sci 50 pp 1299– (2011)
[32] Peano G, Rev Math 8 pp 74– (1903)
[33] Carcaterra A, J Sound Vib 288 pp 751– (2005)
[34] Carcaterra A, Phys Rev E 84 pp 011121– (2011)
[35] Carcaterra A, J Acoust Soc Am 12 pp 1971– (2007)
[36] Carcaterra A, J Acoust Soc Am 119 pp 2141– (2006)
[37] Carcaterra A, J Sound Vib 229 (3) pp 579– (2000)
[38] Carcaterra A, J Sound Vib 88 pp 269– (1995)
[39] Dell’Isola F, Arch Appl Mech 68 pp 1– (1998) · Zbl 0908.73067
[40] DOI: 10.1007/s004190050192 · Zbl 0920.73111
[41] Maurini C, Mech Syst Sig Process 18 pp 1243– (2004)
[42] Maurini C, Int J Solids Struct 4 pp 4473– (2004) · Zbl 1079.74569
[43] Levi-Civita T, A simplified presentation of Einstein’s unified field equations (1929) · JFM 55.1169.03
[44] Levi-Civita T, Caractéristiques des systèmes différentiels et propagation des ondes (1931)
[45] Levi-Civita T, The absolute differential calculus (calculus of tensors) (1977) · Zbl 1206.53013
[46] Ricci-Curbastro G, Math Ann 54 (1) pp 125– (1900) · JFM 31.0297.01
[47] Eringen AC, Microcontinuum field theories I: Foundations and solids (1999) · Zbl 0953.74002
[48] DOI: 10.1016/0020-7225(72)90039-0 · Zbl 0247.73005
[49] Polizzotto C, Int J Solids Struct 38 pp 7359– (2001) · Zbl 1014.74003
[50] Hellinger E, Encyk Math Wiss 4 (5) pp 601– (1913)
[51] Auffrray N, Math Mech Solids (2013)
[52] DOI: 10.1177/10812865030085004 · Zbl 1052.74012
[53] Eringen AC, Nonlocal continuum field theories (2002)
[54] DOI: 10.1016/j.mechmat.2012.06.005
[55] Dell’Isola F, CR Acad Sci, Ser IIb 320 pp 211– (1995)
[56] DOI: 10.1007/s004199900020 · Zbl 0981.74016
[57] Dell’Isola F, CR Acad Sci, Ser IIb 321 pp 303– (1995)
[58] Demmie PN, J Mech Mater Struct 2 (10) pp 1921– (2007)
[59] Du Q, Math Models Meth Appl Sci 23 (3) pp 493– (2013) · Zbl 1266.26020
[60] Emmrich E, Lecture Notes in Computational Science and Engineering 89, in: Meshfree methods for partial differential equations VI pp 45– (2013) · Zbl 1311.74013
[61] lehoucqsilling2008 Lehoucq RB, J Mech Phys Solids 56 (4) pp 1566– (2008) · Zbl 1171.74319
[62] selesonetal2013 Seleson P, Comput Mater Sci 66 pp 34– (2013)
[63] DOI: 10.1007/s10659-007-9125-1 · Zbl 1120.74003
[64] Steinmann P, J Mech Phys Solids 56 pp 772– (2008) · Zbl 1149.74006
[65] Steinmann P, Modell Simul Mater Sci Eng 15 (1) pp S271– (2007)
[66] Sunyk R, Int J Solids Struct 40 (24) pp 6877– (2003) · Zbl 1137.74311
[67] DOI: 10.1002/zamm.201200182 · Zbl 1303.74029
[68] DOI: 10.1016/j.crme.2012.05.003
[69] DOI: 10.1016/j.crme.2011.07.004
[70] Silling SA, J Elast 93 (1) pp 13– (2008) · Zbl 1159.74316
[71] Steigmann DJ, Math Mech Solids 7 pp 393– (2002) · Zbl 1047.74007
[72] Dell’Isola F, Z Angew Math Phys 63 pp 1119– (2012) · Zbl 1330.76016
[73] Neff P, Math Models Meth Appl Sci 17 (3) pp 363– (2007) · Zbl 1119.74029
[74] Neff P, R Soc Edinburgh Proc A 132 (1) pp 221– (2002) · Zbl 1143.74311
[75] Neff P, Z Angew Math Mech 86 (11) pp 892– (2006) · Zbl 1104.74007
[76] Dell’Isola F, CISM Course and Lectures 535, in: Variational models and methods in solid and fluid mechanics pp 1– (2011) · Zbl 1247.70035
[77] DOI: 10.1007/BF00248490 · Zbl 0119.40302
[78] DOI: 10.1016/0020-7683(65)90006-5
[79] DOI: 10.1016/0020-7683(68)90036-X · Zbl 0166.20601
[80] Sedov LI, J Appl Math Mech 32 pp 803– (1972) · Zbl 0185.54002
[81] DOI: 10.1007/978-3-7091-5581-3_23
[82] DOI: 10.1177/1081286503008001658 · Zbl 1039.74028
[83] Gatignol R, J Mec Theor Appl pp 225– (1986)
[84] Madeo A, Eur J Mech A Solids 29 (5) pp 897– (2010)
[85] Seppecher P, Int J Eng Sci 34 pp 977– (1996) · Zbl 0899.76042
[86] Rosi G, Int J Solids Struct 50 (10) pp 1721– (2013)
[87] Seppecher P. Etude d’une modelisation des zones capillaires fluides: Interfaces et lignes de contact. PhD Thesis, Pierre and Marie Curie University, Paris, 1987.
[88] Yang Y, J Nanomech Micromech 1 pp 60– (2011)
[89] Yang Y, Comput Modell Eng Sci 64 pp 1– (2010)
[90] DOI: 10.1016/j.ijsolstr.2012.05.024
[91] DOI: 10.1016/j.jappmathmech.2007.03.007
[92] Seppecher P, Eur J Mech B Fluids 12 pp 69– (1993)
[93] Seppecher P, CR Acad Sci 309 pp 497– (1989)
[94] Seppecher P, Les fluides de Cahn-Hilliard (1996)
[95] Seppecher P, Oil Gas Sci Tech Rev IFP 56 pp 77– (2001)
[96] Seppecher P, Continuum thermomechanics 76 pp 379– (2002)
[97] Seppecher P, Ann Phys 13 pp 13– (1988)
[98] DOI: 10.1098/rspa.2008.0530 · Zbl 1186.74019
[99] Atai AA, Arch Appl Mech 67 pp 303– (1997) · Zbl 0879.73045
[100] Haseganu EM, Comput Mech 17 pp 359– (1996) · Zbl 0851.73011
[101] Eremeyev VA, Dokl Phys 48 (7) pp 359– (2003)
[102] Eremeyev VA, Math Mech Solids 18 pp 204– (2013)
[103] DOI: 10.1023/B:ELAS.0000026106.09385.8c · Zbl 1058.74058
[104] DOI: 10.1016/j.jmps.2011.04.005 · Zbl 1270.74125
[105] Madeo A, Continuum Mech Thermodyn 25 (2) pp 173– (2013) · Zbl 1343.76068
[106] DOI: 10.1002/zamm.200610309 · Zbl 1146.74032
[107] Neff P, Continuum Mech Thermodyn 16 (6) pp 577– (2004) · Zbl 1158.74419
[108] Neff P, Interf Free Bound 9 (4) pp 455– (2007) · Zbl 1137.74014
[109] Lebedev LP, Tensor analysis with applications in mechanics (2010)
[110] McBride AT, J Mech Phys Solids 59 pp 2116– (2011) · Zbl 1270.74058
[111] McBride AT, J Mech Phys Solids 60 pp 1221– (2012)
[112] DOI: 10.1177/1081286512474016 · Zbl 1305.74047
[113] Steeb H, Int J Solids Struct 41 pp 5071– (2004) · Zbl 1179.74082
[114] Steigmann DJ, J Elast 97 pp 97– (2009) · Zbl 1255.74042
[115] Steigmann DJ, Proc R Soc Lond Ser A 455 (1982) pp 437– (1999) · Zbl 0926.74016
[116] Steigmann DJ, Proc R Soc Lond Ser A 453 (1959) pp 853– (1997) · Zbl 0938.74014
[117] Luongo A, Nonlin Dyn 41 pp 171– (2005) · Zbl 1142.74345
[118] Luongo A, J Vib Acoust 128 pp 190– (2006)
[119] Luongo A, Comput Struct 87 pp 1003– (2009)
[120] Steigmann DJ, J Appl Math 48 pp 195– (1992)
[121] Steigmann DJ, Mecc 31 pp 441– (1996) · Zbl 0868.73090
[122] Steigmann DJ, J Elast 33 pp 1– (1993) · Zbl 0801.73039
[123] Boutin C, Advances in Mechanics and Mathematics 21, in: Mechanics of generalized continua pp 131– (2011) · Zbl 1396.74071
[124] Boutin C, Comput Geotech 30 pp 303– (2003)
[125] Chesnais C, J Acoust Soc Am 132 pp 2873– (2012)
[126] Contrafatto L, Int J Plast 22 pp 2272– (2006) · Zbl 1229.74122
[127] Contrafatto L, Int J Numer Meth Eng 63 pp 1089– (2005) · Zbl 1155.74406
[128] Contrafatto L, Int J Solids Struct 39 pp 6241– (2002) · Zbl 1032.74509
[129] DOI: 10.1016/S0020-7683(99)00163-8 · Zbl 0961.74007
[130] Cuomo M, Math Comput Modell 28 pp 185– (1998) · Zbl 1002.74566
[131] DOI: 10.1016/0020-7683(93)90165-4 · Zbl 0782.73009
[132] Misra A, Sci Rep 3 pp 1488– (2013)
[133] Misra A, Continuum Mech Thermodyn 25 pp 1– (2013) · Zbl 1343.74039
[134] DOI: 10.1016/j.ijsolstr.2010.07.002 · Zbl 1196.74161
[135] Rinaldi A, Int J Plast 23 pp 1796– (2007) · Zbl 1155.74402
[136] DOI: 10.1016/j.mechmat.2007.02.005
[137] DOI: 10.1016/j.ijsolstr.2005.05.020 · Zbl 1119.74535
[138] Epstein M, The geometrical language of continuum mechanics (2010) · Zbl 1286.53004
[139] Epstein M, J Math Phys 21 (5) pp 1243– (1980) · Zbl 0448.73003
[140] Segev R, J Math Phys 27 (1) pp 163– (1986) · Zbl 0595.73003
[141] Segev R, Arch Rat Mech Anal 154 (3) pp 183– (2000) · Zbl 0965.58004
[142] Spivak M, A comprehensive introduction to differential geometry 1, 2. ed. (1979)
[143] Spivak M, A comprehensive introduction to differential geometry 2, 2. ed. (1979)
[144] Lagrange JL, Mécanique analytique (1788)
[145] Di Paola M, Int J Solids Struct 47 (18) pp 2347– (2010) · Zbl 1196.74011
[146] Di Paola M, Int J Solids Struct 47 (5) pp 539– (2010) · Zbl 1183.74025
[147] DOI: 10.1016/S0022-5096(99)00029-0 · Zbl 0970.74030
[148] Askari E, J Phys Conf Ser 125 pp 012078– (2008)
[149] Parks ML, Comp Phys Comm 179 pp 777– (2008) · Zbl 1197.82014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.