×

Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces. (Russian. English summary) Zbl 1331.47013

Summary: At the end of the nineteenth century A. Poincare began to study equations which were unsolved with respect to high derivative equations. The systematical study of such equations began in S. L. Sobolev’s works in the second part of the last century. Therefore, such equations are called Sobolev type equations. The increased interest to Sobolev type equations led to the necessity to consider them in quasi-Banach spaces.
This article presents the results of the existence of exponential dichotomies of solutions of dynamical Sobolev type equations studied in quasi-Banach spaces.
The relatively spectral theorem and the problem of the existence of invariant solution spaces were considered. The interest to such solution is explained by the fact that it is the most popular and reflects experimental data while solving practical tasks.
Besides the introduction and the references the article contains two parts. The first part provides necessary notions and a relatively spectral theorem in quasi-Banach spaces. The second one represents the existence of invariant spaces and exponential dichotomies of solutions of the dynamical Sobolev type equation in quasi-Banach spaces.

MSC:

47A50 Equations and inequalities involving linear operators, with vector unknowns
46A16 Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.)

References:

[1] [1] Г. А. Свиридюк, ”К общей теории полугрупп операторов”, Успехи математических наук, 49:4 (1994), 47–74 · Zbl 0882.47019 · doi:10.1070/RM1994v049n04ABEH002390
[2] [2] Г. А. Свиридюк, А. В. Келлер, ”Инвариантные пространства и дихотомии решений одного класса линейных уравнений типа Соболева”, Известия вузов. Математика, 1997, № 5, 60–68 · Zbl 0906.47035
[3] [3] М. А. Сагадеева, Дихотомии решений линейных уравнений соболевского типа, Издат. центр ЮУрГУ, Челябинск, 2012, 139 с. · Zbl 1154.68045
[4] [4] Г. А. Свиридюк, С. А. Загребина, ”Неклассические модели математической физики”, Вестник ЮУрГУ. Серия: Математическое моделирование и программирование, 40(299):14 (2012), 7–18 · Zbl 0342.02023
[5] [5] Дж. К. Аль-Делфи, ”Квазисоболевы пространства \({\ell }^{\mathrm{m}}_{\mathrm{p}}\)”, Вестник ЮУрГУ. Серия: Математика. Механика. Физика, 5:1 (2013), 107–109 · Zbl 1290.70002
[6] [6] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003, 239 pp. · Zbl 1061.35001 · doi:10.1201/9780203911433
[7] [7] R. E. Showalter, ”The Sobolev type equations. I; II”, Appl. Anal., 5:1 (1975), 15–22 · Zbl 0347.35074 · doi:10.1080/00036817508839103
[8] [8] А. Г. Свешников, А. Б. Альшин, М. О. Корпусов, Ю. Д. Плетнер, Линейные и нелинейные уравнения соболевского типа, Физматлит, М., 2007, 736 с. [Sveshnikov A. G., Al’shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Sobolev Type Equations, FizMatLit Publ., M., 2007, 736 pp. (in Russ.)] · Zbl 1222.11084
[9] [9] А. А. Замышляева, Линейные уравнения соболевского типа выского порядка, Издат. центр ЮУрГУ, Челябинск, 2012, 88 с. · Zbl 1222.11084
[10] [10] Н. А. Манакова, Задачи оптимального управления для полулинейных уравнений соболевского типа, Издат. центр ЮУрГУ, Челябинск, 2012, 107 с. · Zbl 0342.02023
[11] [11] Й. Берг, Й. Лe\ddot{}фстрe\ddot{}м, Интерполяционные пространства. Введение, Мир, М., 1980, 264 с. · Zbl 0344.46071 · doi:10.1002/zamm.19800600916
[12] [12] Дж. К. Аль-Делфи, ”Квазиоператор Лапласа в квазисоболевых пространствах”, Вестник СамГТУ. Серия Физ.-мат. науки, 2013, № 2(13), 13–16 · Zbl 1291.11047 · doi:10.14498/vsgtu1213
[13] [13] S. Rolewicz, Metric Linear Spaces, PWN, Warsaw, 1985, 459 pp. · Zbl 0573.46001
[14] [14] Дж. К. Аль-Делфи, Исследование вырожденных голоморфных групп в квазибанаховых пространствах, Дис. ... канд. физ.- мат. наук, Воронеж, 2015, 98 с. [Al-Delfi J. K., The Study of Degenerated Holomorphic Groups in Quasi-Banach spaces, Cand. phys. and math. sci. diss., Voronezh, 2015, 98 pp. (in Russ.)] · Zbl 1351.11035
[15] [15] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, ”On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 · Zbl 1348.46002 · doi:10.14529/jcem150106
[16] [16] А. В. Келлер, Дж. К. Аль-Делфи, ”Голоморфные вырожденные группы операторов в квазибанаховых пространствах”, Вестник ЮУрГУ. Серия “Математика. Механика. Физика{”, 7:1 (2015), 20–27} · Zbl 1351.11035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.