MCMC for normalized random measure mixture models. (English) Zbl 1331.62138

Summary: This paper concerns the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models with normalized random measure priors. Making use of some recent posterior characterizations for the class of normalized random measures, we propose novel Markov chain Monte Carlo methods of both marginal type and conditional type. The proposed marginal samplers are generalizations of Neal’s well-regarded Algorithm 8 for Dirichlet process mixture models, whereas the conditional sampler is a variation of those recently introduced in the literature. For both the marginal and conditional methods, we consider as a running example a mixture model with an underlying normalized generalized Gamma process prior, and describe comparative simulation results demonstrating the efficacies of the proposed methods.


62F15 Bayesian inference
60G57 Random measures
60J22 Computational methods in Markov chains
62G05 Nonparametric estimation


Full Text: DOI arXiv Euclid


[1] Aldous, D. J. (1985). Exchangeability and related topics. In École D’été de Probabilités de Saint-Flour , XIII- 1983. Lecture Notes in Math. 1117 1-198. Springer, Berlin. · Zbl 0562.60042
[2] Barrios, E., Lijoi, A., Nieto-Barajas, L. E. and Prüenster, I. (2012). Modeling with normalized random measure mixture models. Unpublished manuscript. · Zbl 1331.62120
[3] Binder, D. A. (1978). Bayesian cluster analysis. Biometrika 65 31-38. · Zbl 0376.62007
[4] Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353-355. · Zbl 0276.62010
[5] Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Adv. in Appl. Probab. 31 929-953. · Zbl 0957.60055
[6] Broderick, T., Jordan, M. I. and Pitman, J. (2012). Clusters and features from combinatorial stochastic processes. Available at [math.ST]. arXiv:1206.5862 · Zbl 1330.62218
[7] Bush, C. A. and MacEachern, S. N. (1996). A semiparametric Bayesian model for randomised block designs. Biometrika 83 275-285. · Zbl 0864.62052
[8] Dahl, D. B. (2006). Model-based clustering for expression data via a Dirichlet process mixture model. In Bayesian Inference for Gene Expression and Proteomics (K. Do, P. Müller and M. Vannucci, eds.). Cambridge Univ. Press, Cambridge.
[9] Daley, D. J. and Vere-Jones, D. (2002). An Introduction to the Theory of Point Processes . Springer, New York. · Zbl 0657.60069
[10] Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. R. Stat. Soc. Ser. B Stat. Methodol. 56 363-375. · Zbl 0796.62028
[11] Escobar, M. D. (1988). Estimating the means of several normal populations by nonparametric estimation of the distribution of the means. Ph.D. thesis, Yale Univ.
[12] Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. J. Amer. Statist. Assoc. 89 268-277. · Zbl 0791.62039
[13] Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 577-588. · Zbl 0826.62021
[14] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoret. Population Biology 3 87-112; erratum, ibid. 3 (1972), 240, 376. · Zbl 0245.92009
[15] Favaro, S. and Walker, S. G. (2013). Slice sampling \(\sigma \)-stable Poisson-Kingman mixture models. J. Comput. Graph. Statist.
[16] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037
[17] Ferguson, T. S. and Klass, M. J. (1972). A representation of independent increment processes without Gaussian components. Ann. Math. Statist. 43 1634-1643. · Zbl 0254.60050
[18] Fraley, C. and Raftery, A. E. (2007). Bayesian regularization for normal mixture estimation and model-based clustering. J. Classification 24 155-181. · Zbl 1159.62302
[19] Fritsch, A. and Ickstadt, K. (2009). Improved criteria for clustering based on the posterior similarity matrix. Bayesian Anal. 4 367-391. · Zbl 1330.62249
[20] Gasthaus, J., Wood, F., Görür, D. and Teh, Y. W. (2009). Dependent Dirichlet process spike sorting. In Advances in Neural Information Processing Systems 21 497-504.
[21] Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41 337-348. · Zbl 0825.62407
[22] Gnedin, A. and Pitman, J. (2006). Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138 5674-5684. · Zbl 1293.60010
[23] Görür, D., Rasmussen, C. E., Tolias, A. S., Sinz, F. and Logothetis, N. K. (2004). Modelling spikes with mixtures of factor analysers. In Proceedings of the Conference of the German Association for Pattern Recognition ( DAGM ).
[24] Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732. · Zbl 0861.62023
[25] Green, P. J. and Richardson, S. (2001). Modelling heterogeneity with and without the Dirichlet process. Scand. J. Stat. 28 355-375. · Zbl 0973.62031
[26] Griffin, J. E., Kolossiatis, M. and Steel, M. F. J. (2013). Comparing distributions using dependent normalized random measure mixtures. J. R. Stat. Soc. Ser. B Stat. Methodol. 75 499-529.
[27] Griffin, J. E. and Walker, S. G. (2011). Posterior simulation of normalized random measure mixtures. J. Comput. Graph. Statist. 20 241-259.
[28] Griffiths, T. L. and Ghahramani, Z. (2011). The Indian buffet process: An introduction and review. J. Mach. Learn. Res. 12 1185-1224. · Zbl 1280.62038
[29] Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist. 18 1259-1294. · Zbl 0711.62033
[30] Hjort, N. L., Holmes, C., Müller, P. and Walker, S. G., eds. (2010). Bayesian Nonparametrics. Cambridge Series in Statistical and Probabilistic Mathematics 28 . Cambridge Univ. Press, Cambridge. · Zbl 1192.62080
[31] Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161-173. · Zbl 1014.62006
[32] Jain, S. and Neal, R. M. (2000). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Unpublished manuscript.
[33] James, L. F. (2002). Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics. Available at . · Zbl 1078.62106
[34] James, L. F. (2003). A simple proof of the almost sure discreteness of a class of random measures. Statist. Probab. Lett. 65 363-368. · Zbl 1116.60335
[35] James, L. F., Lijoi, A. and Prünster, I. (2006). Conjugacy as a distinctive feature of the Dirichlet process. Scand. J. Stat. 33 105-120. · Zbl 1121.62028
[36] James, L. F., Lijoi, A. and Prünster, I. (2009). Posterior analysis for normalized random measures with independent increments. Scand. J. Stat. 36 76-97. · Zbl 1190.62052
[37] James, L. F., Lijoi, A. and Prünster, I. (2010). On the posterior distribution of classes of random means. Bernoulli 16 155-180. · Zbl 1200.62019
[38] Jasra, A., Holmes, C. C. and Stephens, D. A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statist. Sci. 20 50-67. · Zbl 1100.62032
[39] Kalli, M., Griffin, J. E. and Walker, S. G. (2011). Slice sampling mixture models. Stat. Comput. 21 93-105. · Zbl 1256.65006
[40] Kingman, J. F. C. (1967). Completely random measures. Pacific J. Math. 21 59-78. · Zbl 0155.23503
[41] Kingman, J. F. C. (1993). Poisson Processes. Oxford Studies in Probability 3 . Clarendon Press, Oxford. · Zbl 0771.60001
[42] Kingman, J. F. C., Taylor, S. J., Hawkes, A. G., Walker, A. M., Cox, D. R., Smith, A. F. M., Hill, B. M., Burville, P. J. and Leonard, T. (1975). Random discrete distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 37 1-22.
[43] Lau, J. W. and Green, P. J. (2007). Bayesian model-based clustering procedures. J. Comput. Graph. Statist. 16 526-558.
[44] Lewicki, M. S. (1998). A review of methods for spike sorting: The detection and classification of neural action potentials. Network 9 53-78. · Zbl 0910.92008
[45] Lewis, P. A. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. Quart. 26 403-413. · Zbl 0497.60003
[46] Lijoi, A., Mena, R. H. and Prünster, I. (2005). Bayesian nonparametric analysis for a generalized Dirichlet process prior. Stat. Inference Stoch. Process. 8 283-309. · Zbl 1095.62064
[47] Lijoi, A., Mena, R. H. and Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer. Statist. Assoc. 100 1278-1291. · Zbl 1117.62386
[48] Lijoi, A., Mena, R. H. and Prünster, I. (2007). Controlling the reinforcement in Bayesian non-parametric mixture models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 715-740.
[49] Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Bayesian Nonparametrics (N. L. Hjort, C. C. Holmes, P. Müller and S. G. Walker, eds.) 80-136. Cambridge Univ. Press, Cambridge.
[50] Lijoi, A., Prünster, I. and Walker, S. G. (2008). Investigating nonparametric priors with Gibbs structure. Statist. Sinica 18 1653-1668. · Zbl 1252.60048
[51] Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351-357. · Zbl 0557.62036
[52] MacEachern, S. N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Comm. Statist. Simulation Comput. 23 727-741. · Zbl 0825.62053
[53] MacEachern, S. N. (1998). Computational methods for mixture of Dirichlet process models. In Practical Nonparametric and Semiparametric Bayesian Statistics (D. Dey, P. Müller and D. Sinha, eds.). Lecture Notes in Statist. 133 23-43. Springer, New York. · Zbl 0918.62064
[54] MacEachern, S. N. and Müller, P. (1998). Estimating mixture of Dirichlet process models. J. Comput. Graph. Statist. 7 223-238.
[55] McLachlan, G. J. and Basford, K. E. (1988). Mixture Models : Inference and Applications to Clustering. Statistics : Textbooks and Monographs 84 . Dekker, New York. · Zbl 0697.62050
[56] Medvedovic, M. and Sivaganesan, S. (2002). Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics 18 1194-1206.
[57] Mengersen, K. L. and Robert, C. P. (1996). Testing for mixtures: A Bayesian entropic approach. In Bayesian Statistics , 5 ( Alicante , 1994) (J. O. Berger, J. M. Bernardo, A. P. Dawid, D. V. Lindley and A. F. M. Smith, eds.) 255-276. Oxford Univ. Press, New York.
[58] Muliere, P. and Tardella, L. (1998). Approximating distributions of random functionals of Ferguson-Dirichlet priors. Canad. J. Statist. 26 283-297. · Zbl 0913.62010
[59] Müller, P., Erkanli, A. and West, M. (1996). Bayesian curve fitting using multivariate normal mixtures. Biometrika 83 67-79. · Zbl 0865.62029
[60] Neal, R. M. (1992). Bayesian mixture modeling. In Proceedings of the 11 th International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis , Seattle . Kluwer, Dordrecht. · Zbl 0829.62033
[61] Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Statist. 9 249-265.
[62] Neal, R. M. (2003). Slice sampling. Ann. Statist. 31 705-767. · Zbl 1051.65007
[63] Nieto-Barajas, L. E. and Prünster, I. (2009). A sensitivity analysis for Bayesian nonparametric density estimators. Statist. Sinica 19 685-705. · Zbl 1168.62033
[64] Nieto-Barajas, L. E., Prünster, I. and Walker, S. G. (2004). Normalized random measures driven by increasing additive processes. Ann. Statist. 32 2343-2360. · Zbl 1069.62029
[65] Nobile, A. (1994). Bayesian analysis of finite mixture distributions. Ph.D. thesis, Carnegie Mellon Univ.
[66] Ogata, Y. (1981). On Lewis’ simulation method for Point processes. IEEE Trans. Inform. Theory 27 23-31. · Zbl 0449.60037
[67] Papaspiliopoulos, O. (2008). A note on posterior sampling from Dirichlet mixture models. Working Paper 20, Centre for Research in Statistical Methodology, Univ. Warwick.
[68] Papaspiliopoulos, O. and Roberts, G. O. (2008). Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika 95 169-186. · Zbl 1437.62576
[69] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21-39. · Zbl 0741.60037
[70] Pitman, J. (2003). Poisson-Kingman partitions. In Statistics and Science : A Festschrift for Terry Speed (D.R. Goldstein, ed.). Institute of Mathematical Statistics Lecture Notes-Monograph Series 40 1-34. IMS, Beachwood, OH.
[71] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875 . Springer, Berlin. · Zbl 1103.60004
[72] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 855-900. · Zbl 0880.60076
[73] Quiroga, R. Q. (2007). Spike sorting. Scholarpedia 2 3583.
[74] Raftery, A. E. (1996). Hypothesis testing and model selection. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.). Chapman & Hall, London. · Zbl 0841.62019
[75] Raftery, A. E. (1996). Hypothesis testing and model selection via posterior simulation. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.). Chapman & Hall, London. · Zbl 0841.62019
[76] Rasmussen, C. E., De la Cruz, B. J., Ghahramani, Z. and Wild, D. L. (2009). Modeling and visualizing uncertainty in gene expression clusters using Dirichlet process mixtures. IEEE/ACM Trans. Comput. Biol. and Bioinform. 6 615-628.
[77] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning . MIT Press, Cambridge, MA. · Zbl 1177.68165
[78] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31 560-585. · Zbl 1068.62034
[79] Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc. Ser. B Stat. Methodol. 59 731-792. · Zbl 0891.62020
[80] Roeder, K. (1994). A graphical technique for determining the number of components in a mixture of normals. J. Amer. Statist. Assoc. 89 487-495. · Zbl 0798.62004
[81] Roeder, K. and Wasserman, L. (1997). Practical Bayesian density estimation using mixtures of normals. J. Amer. Statist. Assoc. 92 894-902. · Zbl 0889.62021
[82] Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. Ann. Statist. 28 40-74. · Zbl 1106.62316
[83] Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions . Wiley, Chichester. · Zbl 0646.62013
[84] Trippa, L. and Favaro, S. (2012). A class of normalized random measures with an exact predictive sampling scheme. Scand. J. Stat. 39 444-460. · Zbl 1323.60071
[85] Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Comm. Statist. Simulation Comput. 36 45-54. · Zbl 1113.62058
[86] Wood, F. and Black, M. J. (2008). A nonparametric Bayesian alternative to spike sorting. Journal of Neuroscience Methods 173 1-12.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.