×

Homological mirror symmetry for the quartic surface. (English) Zbl 1334.53091

Mem. Am. Math. Soc. 1116, v, 129 p. (2015).
Let \(X_0\) be a smooth quartic surface in \(\mathbb C P^3\). We can regard \(X_0\) as a symplectic manifold on the one hand, and as an algebraic variety on the other hand. Using these arguments, we can associate two kinds of triangulated categories \(D^\pi{\mathcal F}(X_0)\) and \(D^b\mathrm {Coh}(Z^\ast_q)\), both linear over \(\Lambda_{\mathbb Q}\). Here \(\Lambda_{\mathbb Q}\) is the algebraic closure of the ring of formal power series \(\Lambda_{\Lambda_{\mathbb N}}= \mathbb C[[q]]\) obtained by adjoining roots \(q^{1/d}\) of all orders to \(\Lambda_{\mathbb N}\).
\(D^\pi{\mathcal F}(X_0)\) is the split-closed derived Fukaya category, defined using Lagrangian submanifolds of \(X_0\) and pseudo-holomorphic curves with boundary on them (the Fukaya category is explained in Chapter 8). As for the use of \(\Lambda_{\mathbb Q}\), the author refers to [H. Hofer and D. A. Salamon, The Floer memorial volume. Basel: Birkhäuser. Prog. Math. 133, 483–524 (1995; Zbl 0842.58029)].
The group \(\Gamma_{16}= \{[\mathrm {diag}(\alpha_0,\alpha_1, \alpha_2,\alpha_3)] : \alpha^4_k= 1,\,\alpha_0\alpha_1\alpha_2\alpha_3= 1\}\subset \mathrm {PSL}(V)\), \(\Gamma_{16}\cong\mathbb Z/4\times \mathbb Z/4\), acts on the quadratic surface in \(\mathbb P_{\Lambda_{\mathbb Q}}\) defined by \[ y_0 y_1 y_2 y_3+ q(y^4_0+ y^4_1+ y^4_2+ y^4_3)= 0. \] \(Z^\ast_q\) is the unique minimal resolution of the quotient orbifold. Since \(\Lambda_{\mathbb Q}\) is an algebraically closed field of characteristic \(0\), we can apply the standard theory of algebraic surfaces in this case. \(D^b\mathrm {Coh}(Z^\ast_q)\) is the bounded derived category of coherent sheaves (Coherent sheaves are explained in Chapter 5). The object of this book is to prove the following.
Theorem 1.3. There is a \(\Psi\in\mathrm {End}(\Lambda_{\mathbb N})^\times\) and an equivalence of triangulated categories \[ D^\pi{\mathcal F}(X_0)\cong \widehat\psi^\ast D^b\mathrm {Coh}(Z^\ast_q). \] Here \(\widehat\psi\) is a lift of \(\psi\) to an automorphism of \(\Lambda_0\). This proves M. Kontsevich’s form of the mirror symmetry conjecture [Homological algebra of mirror symmetry. Proceedings of the international congress of mathematicians, ICM, 1994, Zürich, Switzerland. Vol. I. Basel: Birkhäuser. 120–139 (1995; Zbl 0846.53021)], for a quartic surface. \(\psi\) is expected to agree with the standard “mirror map” [M. Nagura and K. Sugiyama, Int. J. Mod. Phys. A 10, No. 2, 233-252 (1995; Zbl 1044.14509)], but the author remarks that this is not known.
A consequence is the existence of a homomorphism \[ \pi_1({\mathcal M}^\ast)\to \operatorname{Aut}(D^b\mathrm {Coh}(Z^\ast_q))/\Lambda_{\mathbb Q}. \] (The author says that the kernel and cokernel of this homomorphism are not known.) An isomorphism \[ K_0(D^\pi{\mathcal F}(X_0))\cong K_0(D^b\mathrm {Coh}(Z^\ast_q))= K_0(Z^\ast_q) \] is shown. Here, \({\mathcal M}^\ast\) is the classifying space (or moduli stack) for some K3 surfaces equipped with an ample cohomology class \(A\), with square \(A\cdot A=4\), and with a choice of a nonzero holomorphic two-form. It carries a fiber bundle with structure group \(\operatorname{Aut}(X_0)\) and the presence of the holomorphic two-form on the fibers provides a natural lift of this to \(\widetilde{\operatorname{Aut}}(X_0)\), the central extension of \(\operatorname{Aut}(X_0)\) [the author, Bull. Soc. Math. Fr. 128, No. 1, 103–149 (2000; Zbl 0992.53059)].
The proof of Theorem 1.3 is done on the basis of tools from category theory (Chapters 2–5), using the general theory of symplectic geometry (Chapter 6) and the geometric structure of the quartic surface \(X_0\) known via Picard-Lefschetz theory (Chapter 7). The main part of the proof is given in Chapters 8 to 11. Precisely, it relies on the following three steps:
1.
To reconstruct \(D^\pi{\mathcal F}(X_0)\) entirely from the full \(A_\infty\)-subcategory of \({\mathcal F}(X_0)\) consisting of a particular set of 64 Lagrangian two-spheres, which are vanishing cycles for the standard pencil (Explanations on \(A_\infty\)-categories are given in Chapter 2). The algebraic part of this construction is given in Chapter 9 by refining the author’s previous work [Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. Zürich: European Mathematical Society (EMS), vi, 326 p. (2008; Zbl 1159.53001)], together with the geometric part prepared in Chapter 7. The author remarks the meanings of this process well understood from physical discussions by K. Hori et al. [“\(D\)-branes and mirror symmetry”, Preprint, arxiv:hepth/0005247].
2.
Following a proposal by the author [Fukaya categories and deformations. Proceedings of the international congress of mathematicians, ICM 2002, Beijing, China, 2002. Vol. II: Invited lectures. Beijing: Higher Education Press. 351–360 (2002; Zbl 1014.53052)] to formulate the relation between the Fukaya categories \({\mathcal F}(M_0)\) and \({\mathcal F}(X_0)\) in terms of the deformation theory of \(A_\infty\)-structures. Here, \(M_0\) is an affine Zariski-open subset of \(X_0\) in which all 64 vanishing cycles lie. This is done in Chapter 8 with the aid of the explanations on deformation theory given in Chapter 3.
3.
After the above processes are done, the problem is reduced to a finite collection of Lagrangian two-spheres in the affine four-manifold \(M_0\). To compute the relevant full \(A_\infty\)-subcategory of \({\mathcal F}(M_0)\), a general dimensional induction argument [the author, Fukaya categories and Picard-Lefschetz theory, loc. cit.] is applied. The algebraic part of this process is given in Chapter 10, and a subtle geometric part is done in Chapter 11 with the aid of computers (the code is available on the author’s homepage).
This book is written not only to present a proof of Kontsevich’s form of the mirror symmetry conjecture for quartic surfaces, but also to present explanations on necessary advanced knowledges from symplectic geometry and algebraic geometry. Therefore this book is readable for those who have basic knowledges in differential geometry and algebraic geometry. We can recommend it not only to learn the proof of Theorem 1.3, but also to learn a new area of geometry developing by the cooperation of symplectic geometry and algebraic geometry with the influence of quantum physics.

MSC:

53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
18E30 Derived categories, triangulated categories (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] V. I. Arnol\(^{\prime}\)d, Some remarks on symplectic monodromy of Milnor fibrations, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 99-103. · Zbl 0970.53043
[2] Paul S. Aspinwall, Some navigation rules for D-brane monodromy, J. Math. Phys. 42 (2001), no. 12, 5534-5552. · Zbl 1019.81050 · doi:10.1063/1.1409963
[3] Denis Auroux, Symplectic 4-manifolds as branched coverings of \(\mathbf C\mathbf P^2\), Invent. Math. 139 (2000), no. 3, 551-602. · Zbl 1080.53084 · doi:10.1007/s002220050019
[4] Denis Auroux, Symplectic maps to projective spaces and symplectic invariants, Turkish J. Math. 25 (2001), no. 1, 1-42. · Zbl 1008.53068
[5] Paul Balmer and Marco Schlichting, Idempotent completion of triangulated categories, J. Algebra 236 (2001), no. 2, 819-834. · Zbl 0977.18009 · doi:10.1006/jabr.2000.8529
[6] A. A. Beĭlinson, Coherent sheaves on \({\mathbf P}^{n}\) and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68-69 (Russian).
[7] Robert J. Blattner and Susan Montgomery, A duality theorem for Hopf module algebras, J. Algebra 95 (1985), no. 1, 153-172. · Zbl 0589.16010 · doi:10.1016/0021-8693(85)90099-7
[8] A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1-36, 258 (English, with English and Russian summaries). · Zbl 1135.18302
[9] Yuri Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002), no. 3, 441-483. · Zbl 1029.57011 · doi:10.1007/s002220200212
[10] S. K. Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999), no. 2, 205-236. · Zbl 1040.53094
[11] S. K. Donaldson, Polynomials, vanishing cycles and Floer homology, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 55-64. · Zbl 0958.57027
[12] M. Douglas, S. Govindarajan, T. Jayaraman, and A. Tomasiello. D-branes on Calabi-Yau manifolds and superpotentials. Preprint hep-th/0203173. · Zbl 1061.81057
[13] A. Einstein. Zum Quantensatz von Sommerfeld und Epstein. Verh. Deutschen Phys. Ges. 19:82-92, 1917.
[14] Kenji Fukaya, Multivalued Morse theory, asymptotic analysis and mirror symmetry, Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., Providence, RI, 2005, pp. 205-278. · Zbl 1085.53080 · doi:10.1090/pspum/073/2131017
[15] Kenji Fukaya, Morse homotopy, \(A^\infty \)-category, and Floer homologies, Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993), Lecture Notes Ser., vol. 18, Seoul Nat. Univ., Seoul, 1993, pp. 1-102. · Zbl 0853.57030
[16] Kenji Fukaya, Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom. 11 (2002), no. 3, 393-512. · Zbl 1002.14014 · doi:10.1090/S1056-3911-02-00329-6
[17] Kenji Fukaya, Deformation theory, homological algebra and mirror symmetry, Geometry and physics of branes (Como, 2001) Ser. High Energy Phys. Cosmol. Gravit., IOP, Bristol, 2003, pp. 121-209.
[18] Kenji Fukaya, Galois symmetry on Floer cohomology, Turkish J. Math. 27 (2003), no. 1, 11-32. · Zbl 1075.53090
[19] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono. Lagrangian intersection Floer theory - anomaly and obstruction (2 volumes). Amer. Math. Soc., 2010. · Zbl 1181.53003
[20] Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original.
[21] Ezra Getzler and John D. S. Jones, \(A_\infty \)-algebras and the cyclic bar complex, Illinois J. Math. 34 (1990), no. 2, 256-283. · Zbl 0701.55009
[22] William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43-96. · Zbl 0678.53059
[23] Robert E. Gompf and András I. Stipsicz, \(4\)-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. · Zbl 0933.57020
[24] Mark Gross, Examples of special Lagrangian fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000) World Sci. Publ., River Edge, NJ, 2001, pp. 81-109. · Zbl 1034.53054 · doi:10.1142/9789812799821_0004
[25] V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff, Algebraic aspects of Chen’s twisting cochain, Illinois J. Math. 34 (1990), no. 2, 485-502. · Zbl 0684.55006
[26] Stephen Halperin and James Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), no. 3, 233-279. · Zbl 0408.55009 · doi:10.1016/0001-8708(79)90043-4
[27] David Harbater, Patching and Galois theory, Galois groups and fundamental groups, Math. Sci. Res. Inst. Publ., vol. 41, Cambridge Univ. Press, Cambridge, 2003, pp. 313-424. · Zbl 1071.14029
[28] Heinrich Hartmann, Period- and mirror-maps for the quartic K3, Manuscripta Math. 141 (2013), no. 3-4, 391-422. · Zbl 1303.14044 · doi:10.1007/s00229-012-0577-7
[29] G. Hochschild, Bertram Kostant, and Alex Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383-408. · Zbl 0102.27701 · doi:10.1090/S0002-9947-1962-0142598-8
[30] H. Hofer and D. A. Salamon, Floer homology and Novikov rings, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 483-524. · Zbl 0842.58029
[31] K. Hori, A. Iqbal, and C. Vafa. D-branes and mirror symmetry. Preprint hep-th/0005247, 2000.
[32] Richard Paul Horja, Hypergeometric functions and mirror symmetry in toric varieties, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)-Duke University.
[33] Shinobu Hosono, Bong H. Lian, Keiji Oguiso, and Shing-Tung Yau, Autoequivalences of derived category of a \(K3\) surface and monodromy transformations, J. Algebraic Geom. 13 (2004), no. 3, 513-545. · Zbl 1070.14042 · doi:10.1090/S1056-3911-04-00364-9
[34] T. V. Kadeishvili, The structure of the \(A(\infty )\)-algebra, and the Hochschild and Harrison cohomologies, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 19-27 (Russian, with English summary). · Zbl 0717.55011
[35] M. Kapranov and E. Vasserot, Kleinian singularities, derived categories and Hall algebras, Math. Ann. 316 (2000), no. 3, 565-576. · Zbl 0997.14001 · doi:10.1007/s002080050344
[36] Bernhard Keller, Introduction to \(A\)-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1-35. · Zbl 0989.18009
[37] M. Kontsevich. Lectures at ENS Paris, Spring 1998. Set of notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona.
[38] Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120-139. · Zbl 0846.53021
[39] Maxim Kontsevich and Yan Soibelman, Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000) World Sci. Publ., River Edge, NJ, 2001, pp. 203-263. · Zbl 1072.14046 · doi:10.1142/9789812799821_0007
[40] Daesung Kwon and Yong-Geun Oh, Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition, Comm. Anal. Geom. 8 (2000), no. 1, 31-82. Appendix 1 by Jean-Pierre Rosay. · Zbl 0951.32025 · doi:10.4310/CAG.2000.v8.n1.a2
[41] L. Lazzarini, Existence of a somewhere injective pseudo-holomorphic disc, Geom. Funct. Anal. 10 (2000), no. 4, 829-862. · Zbl 1003.32004 · doi:10.1007/PL00001640
[42] K. Lefevre. Sur les A_\infty -catégories. PhD thesis, Université Paris 7, 2002.
[43] Marc Levine, Mixed motives, Mathematical Surveys and Monographs, vol. 57, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.14003
[44] Jean-Louis Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. · Zbl 0780.18009
[45] Martin Markl, Transferring \(A_\infty \) (strongly homotopy associative) structures, Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 139-151. · Zbl 1112.18007
[46] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. · Zbl 0793.16029
[47] Masaru Nagura and Katsuyuki Sugiyama, Mirror symmetry of the \(K3\) surface, Internat. J. Modern Phys. A 10 (1995), no. 2, 233-252. · Zbl 1044.14509 · doi:10.1142/S0217751X95000115
[48] Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. · Zbl 0974.18008
[49] T. Nishinou. Convergence of Hermitian-Yang-Mills Connections on Kähler Surfaces and mirror symmetry. Preprint math.SG/0301324.
[50] S. Piunikhin, D. Salamon, and M. Schwarz. Symplectic Floer-Donaldson theory and quantum cohomology. In C. B. Thomas, editor, Contact and symplectic geometry, pages 171-200. Cambridge Univ. Press, 1996. · Zbl 0874.53031
[51] A. Polishchuk, Massey and Fukaya products on elliptic curves, Adv. Theor. Math. Phys. 4 (2000), no. 6, 1187-1207. · Zbl 1060.14516 · doi:10.4310/ATMP.2000.v4.n6.a1
[52] Alexander Polishchuk and Eric Zaslow, Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2 (1998), no. 2, 443-470. · Zbl 0947.14017 · doi:10.4310/ATMP.1998.v2.n2.a9
[53] Marcin Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 119-181. · Zbl 0948.57025 · doi:10.1090/trans2/196/08
[54] Joel Robbin and Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827-844. · Zbl 0798.58018 · doi:10.1016/0040-9383(93)90052-W
[55] Wei-Dong Ruan, Lagrangian torus fibration of quintic Calabi-Yau hypersurfaces. II. Technical results on gradient flow construction, J. Symplectic Geom. 1 (2002), no. 3, 435-521. · Zbl 1090.14502
[56] A. N. Rudakov, Exceptional collections, mutations and helices, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 1-6. · Zbl 0721.14011 · doi:10.1017/CBO9780511721526.001
[57] Dietmar Salamon and Eduard Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), no. 10, 1303-1360. · Zbl 0766.58023 · doi:10.1002/cpa.3160451004
[58] Paul Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), no. 1, 103-149 (English, with English and French summaries). · Zbl 0992.53059
[59] Paul Seidel, Vanishing cycles and mutation, European Congress of Mathematics, Vol. II (Barcelona, 2000) Progr. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 65-85. · Zbl 1042.53060
[60] Paul Seidel, Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 351-360. · Zbl 1014.53052
[61] Paul Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003), no. 5, 1003-1063. · Zbl 1032.57035 · doi:10.1016/S0040-9383(02)00028-9
[62] Paul Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. · Zbl 1159.53001
[63] Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37-108. · Zbl 1092.14025 · doi:10.1215/S0012-7094-01-10812-0
[64] V. De Silva. Products in the symplectic Floer homology of Lagrangian intersections. PhD thesis, Oxford University, 1998.
[65] Michio Suzuki, Group theory. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247, Springer-Verlag, Berlin-New York, 1982. Translated from the Japanese by the author. · Zbl 0472.20001
[66] R. P. Thomas and S.-T. Yau, Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002), no. 5, 1075-1113. · Zbl 1115.53054 · doi:10.4310/CAG.2002.v10.n5.a8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.