×

Formulas and identities involving the Askey-Wilson operator. (English) Zbl 1336.33026

Summary: We derive two new versions of Cooper’s formula for the iterated Askey-Wilson operator. Using the second version of Cooper’s formula and the Leibniz rule for the iterated Askey-Wilson operator, we derive several formulas involving this operator. We also give new proofs of Rogers’ summation formula for \({}_6\phi_5\) series, Watson’s transformation, and we establish a Rodriguez type operational formula for the Askey-Wilson polynomials. In addition we establish two integration by parts formulas for integrals involving the iterated Askey-Wilson operator. Using the first of these integration by parts formulas, we derive a two parameter generating function for the Askey-Wilson polynomials. A generalization of the Leibniz rule for the iterated Askey-Wilson operator is also given and used to derive a multi-sum identity.

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
Full Text: DOI

References:

[1] Akhiezer, N. I., The Classical Moment Problem and some Related Questions in Analysis (1965), Oliver and Boyd: Oliver and Boyd Edinburgh, English translation · Zbl 0135.33803
[2] Andrews, G. E.; Askey, R. A.; Roy, R., Special Functions (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0920.33001
[3] Annaby, M. H.; Mansour, Z. S., \(q\)-Taylor and interpolation series for Jackson \(q\)-difference operators, J. Math. Anal. Appl., 344, 472-483 (2008) · Zbl 1149.40001
[4] Askey, R. A.; Wilson, J. A., Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, Mem. Amer. Math. Soc., vol. 319 (1985) · Zbl 0572.33012
[5] Brown, B. M.; Evans, W. D.; Ismail, M. E.H., The Askey-Wilson polynomials and \(q\)-Sturm-Liouville problems, Math. Proc. Cambridge Philos. Soc., 119, 1-16 (1996) · Zbl 0860.33012
[6] Cooper, S., The Askey-Wilson operator and the \({}_6\phi_5\) summation formula, South East Asian J. Math. Math. Sci., 1, 71-82 (2002) · Zbl 1029.33009
[7] Gasper, G.; Rahman, M., Basic Hypergeometric Series (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1129.33005
[8] Ismail, M. E.H., The Askey-Wilson operator and summation theorems, (Ismail, M. E.H.; Nashed, M. Z.; Zayed, A.; Ghaleb, A., Mathematical Analysis, Wavelets and Signal Processing. Mathematical Analysis, Wavelets and Signal Processing, Contemp. Math., vol. 190 (1995)), 171-178 · Zbl 0839.33010
[9] Ismail, M. E.H., Classical and Quantum Orthogonal Polynomials in One Variable (2009), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1172.42008
[10] Ismail, M. E.H.; Rahman, M., Connection relations and expansions, Pacific J. Math., 252, 427-446 (2011) · Zbl 1235.05020
[11] Ismail, M. E.H.; Stanton, D., \(q\)-Taylor theorems, polynomial expansions, and interpolation of entire functions, J. Approx. Theory, 123, 125-146 (2003) · Zbl 1035.30025
[12] Ismail, M. E.H.; Stanton, D., Expansions in the Askey-Wilson polynomials, J. Math. Anal. Appl., 424, 664-674 (2015) · Zbl 1309.33020
[13] Ismail, M. E.H.; Stanton, D.; Viennot, G., The combinatorics of \(q\)-Hermite polynomials and the Askey-Wilson integral, European J. Combin., 8, 379-392 (1987) · Zbl 0642.33006
[14] Jia, Z., A new extension of the nonterminating \({}_6\phi_5\) summation via \(q\)-difference equation, Taiwanese J. Math. (2016), in press
[15] Kim, J. S.; Stanton, D., Bootstrapping and the Askey-Wilson polynomials, J. Math. Anal. Appl., 421, 501-521 (2015) · Zbl 1302.33017
[16] Liu, Z. G., Some operator identities and \(q\)-series transformation formulas, Discrete Math., 265, 119-139 (2003) · Zbl 1021.05010
[17] Liu, Z. G., An extension of the non-terminating \({}_6\phi_5\) summation and the Askey-Wilson polynomials, J. Difference Equ. Appl., 17, 1401-1411 (2011) · Zbl 1229.05043
[18] Liu, Z. G., On the \(q\)-partial differential equations and \(q\)-series, (The Legacy of Srinivasa Ramanujan. The Legacy of Srinivasa Ramanujan, Ramanujan Math. Soc. Lect. Notes Ser., vol. 20 (2013), Ramanujan Math. Soc.: Ramanujan Math. Soc. Mysore), 213-250 · Zbl 1310.05024
[19] Shohat, J.; Tamarkin, J. D., The Problem of Moments (1950), American Mathematical Society: American Mathematical Society Providence · Zbl 0041.43302
[20] Simon, B., The classical moment as a selfadjoint finite difference operator, Adv. Math., 137, 82-203 (1998) · Zbl 0910.44004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.