×

Shape classification based on interpoint distance distributions. (English) Zbl 1336.62171

Summary: According to D. G. Kendall [Stat. Sci. 4, No. 2, 87–120 (1989; Zbl 0955.60507)], in shape theory, The idea is to filter out effects resulting from translations, changes of scale and rotations and to declare that shape is “what is left”. While this statement applies in principle to classical shape theory based on landmarks, the basic idea remains also when other approaches are used. For example, we might consider, for every shape, a suitable associated function which, to a large extent, could be used to characterize the shape. This finally leads to identify the shapes with the elements of a quotient space of sets in such a way that all the sets in the same equivalence class share the same identifying function. In this paper, we explore the use of the interpoint distance distribution (i.e. the distribution of the distance between two independent uniform points) for this purpose. This idea has been previously proposed by other authors (e.g., [R. Osada et al., ACM Trans. Graph. 21, No. 4, 807–832 (2002; Zbl 1331.68256); M. Bonetti and M. Pagano, “The interpoint distance distribution as a descriptor of point patterns, with an application to cluster detection”, Stat. Med. 24, No. 5, 753–773 (2005)]). We aim at providing some additional mathematical support for the use of interpoint distances in this context. In particular, we show the Lipschitz continuity of the transformation taking every shape to its corresponding interpoint distance distribution. Also, we obtain a partial identifiability result showing that, under some geometrical restrictions, shapes with different planar area must have different interpoint distance distributions. Finally, we address practical aspects including a real data example on shape classification in marine biology.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62H35 Image analysis in multivariate analysis

Software:

fda (R); EMD; mstat; Stata
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosio, L.; Colesanti, A.; Villa, E., Outer Minkowski content for some classes of closed sets, Math. Ann., 342, 727-748 (2008) · Zbl 1152.28005
[2] Amit, Y.; Grenander, U.; Piccioni, M., Structural image restoration trough deformable templates, J. Amer. Statist. Assoc., 86, 376-387 (1991)
[3] Averkov, G.; Bianchi, G., Confirmation of Matheron’s conjecture on the covariogram of a planar convex body, J. Eur. Math. Soc., 11, 1187-1202 (2009) · Zbl 1185.52002
[4] Begg, G. A.; Campana, S. E.; Fowler, A. J.; Suthers, I. M., Otolith research and application: current directions in innovation and implementation, Mar. Freshwater Res., 56, 477-483 (2005)
[5] Berrendero, J. R.; Cholaquidis, A.; Cuevas, A.; Fraiman, R., A geometrically motivated parametric model in manifold estimation, Statistics, 48, 983-1004 (2014) · Zbl 1367.62173
[6] Berrendero, J. R.; Cuevas, A.; Torrecilla, J. L., Variable selection in functional data classification: a maxima-hunting proposal, Statist. Sinica (2015), in press · Zbl 1356.62079
[7] Bonetti, M.; Pagano, M., The interpoint distance distribution as a descriptor of point patterns, with an application to cluster detection, Stat. Med., 24, 753-773 (2005)
[8] Bongiorno, E. G.; Goia, A.; Salinelli, E.; Vieu, P., Contributions in Infinite-dimensional Statistics and Related Topics (2014), S.E. Esculapio: S.E. Esculapio Bologna
[9] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry (2002), American Mathematical Society · Zbl 1040.53088
[10] Cabo, A. J.; Baddeley, A. J., Line transects, covariance functions and set convergence, Adv. Appl. Probab., 27, 585-605 (1995) · Zbl 0829.60009
[11] Cabo, A. J.; Baddeley, A. J., Estimation of mean particle volume using the set covariance function, Adv. Appl. Probab., 35, 27-46 (2003) · Zbl 1021.62078
[12] Caelli, T., On generating spatial configurations with identical interpoint distance distributions, (Combinatorial Mathematics, VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979). Combinatorial Mathematics, VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979), Lecture Notes in Math., vol. 829 (1980), Springer: Springer Berlin), 69-75
[13] Cagliari, F.; Di Fabio, B.; Landi, C., The natural pseudo-distance as a quotient pseudo-metric, and applications, Forum Math. (2014), in press. http://dx.doi.org/10.1515/forum-2012-0152
[14] Cuevas, A., A partial overview of the theory of statistics with functional data, J. Statist. Plann. Inference, 147, 1-23 (2014) · Zbl 1278.62012
[15] Cuevas, A.; Fraiman, R.; Rodríguez-Casal, A., A nonparametric approach to the estimation of lengths and surface areas, Ann. Statist., 35, 1031-1051 (2007) · Zbl 1124.62017
[16] Delicado, P., Dimensionality reduction when data are density functions, Comput. Statist. Data Anal., 55, 401-420 (2011) · Zbl 1247.62148
[17] Federer, H., Curvature measures, Trans. Amer. Math. Soc, 93, 418-491 (1959) · Zbl 0089.38402
[18] Ferraty, F.; Vieu, P., Nonparametric Functional Data Analysis: Theory and Practice (2006), Springer · Zbl 1119.62046
[19] Folland, G. B., Real Analysis. Modern Techniques and their Applications (1999), Wiley: Wiley New York · Zbl 0924.28001
[20] (Ferraty, F.; Romain, Y., The Oxford Handbook of Functional Data Analysis (2011), Oxford University Press: Oxford University Press Oxford) · Zbl 1284.62001
[21] Galerne, B., Computation of the perimeter of measurable sets via their covariogram. Applications to random sets, Image Anal. Stereol., 30, 39-51 (2011) · Zbl 1228.60019
[22] Gibbs, A. L.; Su, F. E., On choosing and bounding probability metrics, Int. Stat. Rev., 70, 3, 419-435 (2002) · Zbl 1217.62014
[23] Grenander, U., (Pattern Synthesis. Pattern Synthesis, Lectures in Pattern Theory, vol. 1 (1976), Springer-Verlag: Springer-Verlag New York) · Zbl 0334.68009
[24] Grenander, U., Abstract Inference (1981), Wiley: Wiley New York · Zbl 0673.62088
[25] Hatcher, A., Algebraic Topology (2002), Cambridge University Press · Zbl 1044.55001
[26] Hobolt, A.; Pedersen, J.; Vedel-Jensen, E. B., A continuous parametric shape model, Ann. Inst. Statist. Math., 55, 227-242 (2003) · Zbl 1049.62071
[27] Hobolt, A.; Vedel-Jensen, E. B., Modelling stochastic changes in curve shape, with an application to cancer diagnostics, Adv. Appl. Probab., 32, 344-362 (2000) · Zbl 0956.92024
[28] Horváth, L.; Kokoszka, P., Inference for Functional Data with Applications (2012), Springer: Springer New York · Zbl 1279.62017
[29] Kendall, D. G., A survey of the statistical theory of shape, Statist. Sci., 4, 87-120 (1989) · Zbl 0955.60507
[30] Kendall, D. G.; Barden, D.; Carne, T. K.; Le, H., Shape and Shape Theory (1999), Wiley · Zbl 0940.60006
[31] Kendall, W. S.; Le, H., Statistical shape theory, (Kendall, W. S.; Molchanov, I., New Perspectives in Stochastic Geometry (2010), Oxford University Press), 348-373 · Zbl 1192.62166
[32] Kent, J. T., The complex Bingham distribution and shape analysis, J. R. Stat. Soc. B, 56, 285-299 (1994) · Zbl 0806.62040
[33] Kent, J. T., Current issues for statistical inference in shape analysis, (Mardia, K. V.; Gill, C. A., Proceedings in Current Issues in Statistical Shape Analysis (1995), Leeds University Press), 167-175
[34] Lemke, P.; Skiena, S. S.; Smith, W. D., Reconstructing sets from interpoint distances, (Aronov, B.; Basu, S.; Pach, J.; Sharir, y. M., Discrete and Computational Geometry. Discrete and Computational Geometry, Algorithms and Combinatorics, vol. 25 (1995), Springer: Springer New York), 597-631 · Zbl 1104.68803
[35] Ling, H.; Okada, K., An efficient earth mover’s distance algorithm for robust histogram comparison, IEEE Trans. Pattern Anal. Mach. Intell., 29, 840-853 (2007)
[36] Lombarte, A.; Chic, O.; Parisi-Barabad, V.; Olivella, R.; Piera, J.; García-Ladona, E., A web-based environment for shape analysis of fish otoliths, The AFORO database. Sci. Mar., 70, 147-152 (2006)
[37] Mallows, C. L.; Clark, J. M.C., Linear-intercept distributions do not characterize plane sets, J. Appl. Probab., 7, 240-244 (1970) · Zbl 0231.60011
[38] Marron, J. S.; Alonso, A. M., Overview of object oriented data analysis, Biom. J., 56, 732-753 (2014) · Zbl 1309.62008
[39] Martin, G. E., Transformation Geometry. An Introduction to Symmetry (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0484.51001
[40] Matern, B., (Spatial Variation. Spatial Variation, Lecture Notes in Statistics, vol. 36 (1986), Springer: Springer New York) · Zbl 0608.62122
[41] Matheron, G., Le Covariogramme Géometrique Des Compacts Convexes Des \(R^2\). Technical Report N- 2/86/Gs (1986), Centre de Géostatistique, Ecole Nationale Supérieure des Mines de Paris
[42] Mattila, P., Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0819.28004
[43] Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D., Shape distributions, ACM Trans. Graph., 21, 807-832 (2002) · Zbl 1331.68256
[44] Ramsay, J. O.; Silverman, B. W., Functional Data Analysis (1997), Springer: Springer New York · Zbl 0882.62002
[45] Rubner, Y.; Tomasi, C.; Guibas, L. J., The earth mover’s distance as a metric for image retrieval, Int. J. Comput. Vis., 40, 99-121 (2000) · Zbl 1012.68705
[46] Storbeck, F.; Daan, B., Fish species recognition using computer vision and a neural network, Fish. Res., 51, 11-15 (2001)
[47] Tebaldi, P.; Bonetti, M.; Pagano, M., M statistic commands: interpoint distance distribution analysis, Stata J., 11, 271-289 (2011)
[48] Tuset, V. M.; Lombarte, A.; Assis, C. A., Otolith atlas for the western Mediterranean, north and central eastern Atlantic, Sci. Mar., 72, 7-198 (2008)
[49] Villani, C., (Topics in Optimal Transportation. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58 (2003), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1106.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.