Sperling, Marcus; Stöckinger, Dominik; Voigt, Alexander Renormalization of vacuum expectation values in spontaneously broken gauge theories. (English) Zbl 1342.81201 J. High Energy Phys. 2013, No. 7, Paper No. 132, 19 p. (2013). Summary: We compute one-loop and two-loop \(\beta\)-functions for vacuum expectation values (VEVs) in gauge theories. In \(R_\xi\) gauge the VEVs renormalize differently from the respective scalar fields. We focus particularly on the origin and behaviour of this difference and show that it can be interpreted as the anomalous dimension of a certain scalar background field, leading to simple direct computation and qualitative understanding. The results are given for generic as well as supersymmetric gauge theories. These complement the set of well-known \(\gamma\)- and \(\beta\)-functions of Machacek/Vaughn. As an application, we compute the \(\beta\)-functions for VEVs and \(\tan\beta\) in the MSSM, NMSSM, and \(E_6SSM\). Cited in 13 Documents MSC: 81R40 Symmetry breaking in quantum theory 81T17 Renormalization group methods applied to problems in quantum field theory Keywords:spontaneous symmetry breaking; renormalization group; supersymmetric gauge theory Software:SARAH; SUSY Phenomenology toolbox PDF BibTeX XML Cite \textit{M. Sperling} et al., J. High Energy Phys. 2013, No. 7, Paper No. 132, 19 p. (2013; Zbl 1342.81201) Full Text: DOI arXiv References: [1] ALEPH, DELPHI, L3, OPAL, SLD collaboration, LEP Electroweak Working, SLD Electroweak, SLD Heavy Flavour groups, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE]. [2] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. [3] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. [4] G. ’t Hooft, Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys. B 35 (1971) 167 [INSPIRE]. [5] G. ’t Hooft and M. Veltman, Combinatorics of gauge fields, Nucl. Phys. B 50 (1972) 318 [INSPIRE]. [6] B. Lee and J. Zinn-Justin, Spontaneously Broken Gauge Symmetries. 1. Preliminaries, Phys. Rev. D 5 (1972) 3121 [INSPIRE]. [7] B. Lee and J. Zinn-Justin, Spontaneously broken gauge symmetries. 2. Perturbation theory and renormalization, Phys. Rev. D 5 (1972) 3137 [Erratum ibid. D 8 (1973) 4654] [INSPIRE]. [8] B. Lee and J. Zinn-Justin, Spontaneously broken gauge symmetries. 3. Equivalence, Phys. Rev. D 5 (1972) 3155 [INSPIRE]. [9] C. Becchi, A. Rouet and R. Stora, The Abelian Higgs-Kibble Model. Unitarity of the S Operator, Phys. Lett. B 52 (1974) 344 [INSPIRE]. [10] C. Becchi, A. Rouet and R. Stora, Renormalization of the Abelian Higgs-Kibble Model, Commun. Math. Phys. 42 (1975) 127 [INSPIRE]. [11] C. Becchi, A. Rouet and R. Stora, Renormalization of Gauge Theories, Annals Phys. 98 (1976) 287 [INSPIRE]. [12] E. Kraus, The Renormalization of the electroweak standard model to all orders, Annals Phys. 262 (1998) 155 [hep-th/9709154] [INSPIRE]. · Zbl 0923.58059 [13] E. Kraus and S. Groot Nibbelink, Renormalization of the electroweak standard model, hep-th/9809069 [INSPIRE]. [14] P.A. Grassi, The Abelian anti-ghost equation for the standard model in the ’t Hooft background gauge, Nucl. Phys. B 537 (1999) 527 [hep-th/9804013] [INSPIRE]. · Zbl 0948.81661 [15] P.A. Grassi, Renormalization of nonsemisimple gauge models with the background field method, Nucl. Phys. B 560 (1999) 499 [hep-th/9908188] [INSPIRE]. · Zbl 0957.81010 [16] W. Hollik, E. Kraus, M. Roth, C. Rupp, K. Sibold and D. Stöckinger, Renormalization of the minimal supersymmetric standard model, Nucl. Phys. B 639 (2002) 3 [hep-ph/0204350] [INSPIRE]. [17] E. Kraus and K. Sibold, Rigid invariance as derived from BRS invariance: The Abelian Higgs model, Z. Phys. C 68 (1995) 331 [hep-th/9503140] [INSPIRE]. [18] B.S. DeWitt, Quantum Theory of Gravity. 3. Applications of the Covariant Theory, Phys. Rev. 162 (1967) 1239 [INSPIRE]. · Zbl 0161.46501 [19] H. Kluberg-Stern and J. Zuber, Renormalization of Nonabelian Gauge Theories in a Background Field Gauge. 1. Green Functions, Phys. Rev. D 12 (1975) 482 [INSPIRE]. [20] H. Kluberg-Stern and J. Zuber, Renormalization of Nonabelian Gauge Theories in a Background Field Gauge. 2. Gauge Invariant Operators, Phys. Rev. D 12 (1975) 3159 [INSPIRE]. [21] A. Dabelstein, The One loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses, Z. Phys. C 67 (1995) 495 [hep-ph/9409375] [INSPIRE]. [22] P.H. Chankowski, S. Pokorski and J. Rosiek, Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector, Nucl. Phys. B 423 (1994) 437 [hep-ph/9303309] [INSPIRE]. [23] Y. Yamada, Two loop renormalization of tan beta and its gauge dependence, Phys. Lett. B 530 (2002) 174 [hep-ph/0112251] [INSPIRE]. [24] P. Athron, D. Stöckinger and A. Voigt, Threshold Corrections in the Exceptional Supersymmetric Standard Model, Phys. Rev. D 86 (2012) 095012 [arXiv:1209.1470] [INSPIRE]. [25] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE]. [26] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE]. [27] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE]. [28] S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE]. [29] Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: Supergraph method, Phys. Rev. D 50 (1994) 3537 [hep-ph/9401241] [INSPIRE]. [30] I. Jack and D. Jones, Soft supersymmetry breaking and finiteness, Phys. Lett. B 333 (1994) 372 [hep-ph/9405233] [INSPIRE]. [31] A.D. Box and X. Tata, Threshold and flavor effects in the renormalization group equations of the MSSM: Dimensionless couplings, Phys. Rev. D 77 (2008) 055007 [Erratum ibid. D 82 (2010) 119904] [arXiv:0712.2858] [INSPIRE]. [32] M.-x. Luo, H.-w. Wang and Y. Xiao, Two loop renormalization group equations in general gauge field theories, Phys. Rev. D 67 (2003) 065019 [hep-ph/0211440] [INSPIRE]. [33] O. Piguet and S. Sorella, Algebraic renormalization: Perturbative renormalization, symmetries and anomalies, Lect. Notes Phys. M 28 (1995) 1. · Zbl 0845.58069 [34] F. Brandt, N. Dragon and M. Kreuzer, All consistent Yang-Mills anomalies, Phys. Lett. B 231 (1989) 263 [INSPIRE]. [35] R. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE]. [36] D. Capper and D. Jones, The effective potential in the light cone gauge and supersymmetric Yang-Mills theories, Nucl. Phys. B 252 (1985) 718 [INSPIRE]. [37] H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE]. [38] A. Freitas and D. Stöckinger, Gauge dependence and renormalization of tan beta in the MSSM, Phys. Rev. D 66 (2002) 095014 [hep-ph/0205281] [INSPIRE]. [39] N. Baro, F. Boudjema and A. Semenov, Automatised full one-loop renormalisation of the MSSM. I. The Higgs sector, the issue of tan β and gauge invariance, Phys. Rev. D 78 (2008) 115003 [arXiv:0807.4668] [INSPIRE]. [40] J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev. D 39 (1989) 844 [INSPIRE]. [41] S. King, S. Moretti and R. Nevzorov, Theory and phenomenology of an exceptional supersymmetric standard model, Phys. Rev. D 73 (2006) 035009 [hep-ph/0510419] [INSPIRE]. [42] R.M. Fonseca, M. Malinsky, W. Porod and F. Staub, Running soft parameters in SUSY models with multiple U(1) gauge factors, Nucl. Phys. B 854 (2012) 28 [arXiv:1107.2670] [INSPIRE]. · Zbl 1229.81181 [43] F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE]. · Zbl 1214.81168 [44] F. Staub, T. Ohl, W. Porod and C. Speckner, A Tool Box for Implementing Supersymmetric Models, Comput. Phys. Commun. 183 (2012) 2165 [arXiv:1109.5147] [INSPIRE]. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.