×

Thermalization of the spectral function in strongly coupled two dimensional conformal field theories. (English) Zbl 1342.81476

Summary: Using Wigner transforms of Green functions, we discuss non-equilibrium generalizations of spectral functions and occupation numbers. We develop methods for computing time-dependent spectral functions in conformal field theories holographically dual to thin-shell AdS-Vaidya spacetimes.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] B.V. Jacak and B. Müller, The exploration of hot nuclear matter, Science337 (2012) 310 [INSPIRE].
[2] T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys. A 772 (2006) 200 [hep-ph/0602189] [INSPIRE].
[3] K. Dusling, T. Epelbaum, F. Gelis and R. Venugopalan, Quantum chaos in the perfect fluid: spectrum of initial fluctuations in the little bang, arXiv:1210.6053 [INSPIRE].
[4] P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].
[5] M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].
[6] M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization — An ADM formulation, Phys. Rev. D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].
[7] V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE]. · Zbl 1216.83028
[8] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110
[9] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].
[10] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
[11] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
[12] J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP11 (2010) 149 [arXiv:1006.4090] [INSPIRE]. · Zbl 1294.81128
[13] T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE]. · Zbl 1448.83015
[14] V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett.106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].
[15] V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
[16] V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].
[17] A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP01 (2012) 102 [arXiv:1110.1607] [INSPIRE]. · Zbl 1306.81144
[18] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393]. · Zbl 1456.82578
[19] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE]. · Zbl 1179.81026
[20] S. Caron-Huot, P.M. Chesler and D. Teaney, Fluctuation, dissipation and thermalization in non-equilibrium AdS5black hole geometries, Phys. Rev. D 84 (2011) 026012 [arXiv:1102.1073] [INSPIRE].
[21] P.M. Chesler and D. Teaney, Dynamical Hawking radiation and holographic thermalization, arXiv:1112.6196 [INSPIRE].
[22] P.M. Chesler and D. Teaney, Dilaton emission and absorption from far-from-equilibrium non-abelian plasma, arXiv:1211.0343 [INSPIRE].
[23] P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].
[24] M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].
[25] W. van der Schee, Holographic thermalization with radial flow, Phys. Rev. D 87 (2013), 061901 [arXiv:1211.2218] [INSPIRE].
[26] J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP12 (2011) 082 [arXiv:1109.3571] [INSPIRE]. · Zbl 1306.81145
[27] S. Banerjee, R. Iyer and A. Mukhopadhyay, The holographic spectral function in non-equilibrium states, Phys. Rev. D 85 (2012) 106009 [arXiv:1202.1521] [INSPIRE].
[28] A. Mukhopadhyay, Non-equilibrium fluctuation-dissipation relation from holography, Phys. Rev. D 87, 066004 (2013) [arXiv:1206.3311] [INSPIRE].
[29] P. Kovtun and A. Starinets, Thermal spectral functions of strongly coupled N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 96 (2006) 131601 [hep-th/0602059] [INSPIRE].
[30] D. Teaney, Finite temperature spectral densities of momentum and R-charge correlators in N = 4 Yang-Mills theory, Phys. Rev. D 74 (2006) 045025 [hep-ph/0602044] [INSPIRE].
[31] M. Hillery et al., Distribution functions in physics: fundamentals, Phys. Rept.106 (1984) 121.
[32] K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Japan22 (1940) 264. · JFM 66.1175.02
[33] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].
[34] P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].
[35] L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP02 (2004) 014 [hep-th/0306170] [INSPIRE].
[36] G. Festuccia and H. Liu, Excursions beyond the horizon: black hole singularities in Yang-Mills theories. I, JHEP04 (2006) 044 [hep-th/0506202] [INSPIRE].
[37] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043
[38] J.I. Kapusta, Finite temperature field theory (1989). · Zbl 0743.70020
[39] D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE].
[40] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
[41] G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].
[42] R.H. Brandenberger, T. Prokopec and V.F. Mukhanov, The entropy of the gravitational field, Phys. Rev. D 48 (1993) 2443 [gr-qc/9208009] [INSPIRE]. · Zbl 1311.92141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.