On black hole thermodynamics from super Yang-Mills. (English) Zbl 1342.83435

Summary: We consider maximally supersymmetric \(\mathrm{U}(N)\) Yang-Mills in \((1+p)\)-dimensions for \(p<3\). In the ’t Hooft large \(N\) limit this is conjectured to be dual to \(N\) \(\mathrm{D}p\)-branes in the decoupling limit. At low temperatures \(T\ll\lambda^{1/(3-p)}\) governed by the dimensionful ’t Hooft coupling \(\lambda\), supergravity black holes predict the free energy density goes as \(\sim N^2T^{\frac{2(7-p)}{(5-p)}}\) and the expectation value of the scalars goes as \(\sim T^{\frac{2}{5-p}}\), with dimensions made up by \(\lambda\). The purpose of this work is to explain the origin of these peculiar powers of temperature. We argue that these powers naturally arise by requiring that the low energy moduli of the theory become strongly coupled at low temperature. As an application, we consider the BMN quantum mechanics that results from a supersymmetric deformation of the \(p=0\) theory. The black holes dual to this deformed theory have not yet been constructed, and our analysis can be used to make an explicit prediction for their thermodynamic behaviour.


83E30 String and superstring theories in gravitational theory
83C57 Black holes
Full Text: DOI arXiv


[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[2] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev.D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
[3] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE]. · Zbl 1368.81009
[4] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE]. · Zbl 1376.83026
[5] D.N. Kabat and G. Lifschytz, Approximations for strongly coupled supersymmetric quantum mechanics, Nucl. Phys.B 571 (2000) 419 [hep-th/9910001] [INSPIRE]. · Zbl 1028.81507
[6] D.N. Kabat, G. Lifschytz and D.A. Lowe, Black hole thermodynamics from calculations in strongly coupled gauge theory, Int. J. Mod. Phys.A 16 (2001) 856 [hep-th/0007051] [INSPIRE]. · Zbl 0982.83028
[7] D.N. Kabat, G. Lifschytz and D.A. Lowe, Black hole entropy from nonperturbative gauge theory, Phys. Rev.D 64 (2001) 124015 [hep-th/0105171] [INSPIRE].
[8] Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, A low temperature expansion for matrix quantum mechanics, arXiv:1304.1593 [INSPIRE]. · Zbl 1388.81902
[9] T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].
[10] S. Catterall and T. Wiseman, Towards lattice simulation of the gauge theory duals to black holes and hot strings, JHEP12 (2007) 104 [arXiv:0706.3518] [INSPIRE]. · Zbl 1246.81112
[11] M. Hanada, J. Nishimura and S. Takeuchi, Non-lattice simulation for supersymmetric gauge theories in one dimension, Phys. Rev. Lett.99 (2007) 161602 [arXiv:0706.1647] [INSPIRE].
[12] K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett.100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].
[13] S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev.D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].
[14] M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 181602 [arXiv:0811.2081] [INSPIRE].
[15] S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP04 (2010) 077 [arXiv:0909.4947] [INSPIRE]. · Zbl 1272.83046
[16] M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].
[17] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP04 (2002) 013 [hep-th/0202021] [INSPIRE].
[18] S. Catterall and G. van Anders, First results from lattice simulation of the PWMM, JHEP09 (2010) 088 [arXiv:1003.4952] [INSPIRE]. · Zbl 1291.81235
[19] S. Catterall, A. Joseph and T. Wiseman, Thermal phases of D1-branes on a circle from lattice super Yang-Mills, JHEP12 (2010) 022 [arXiv:1008.4964] [INSPIRE]. · Zbl 1294.81176
[20] R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett.70 (1993) 2837 [hep-th/9301052] [INSPIRE]. · Zbl 1051.83544
[21] L. Susskind, Matrix theory black holes and the Gross-Witten transition, hep-th/9805115 [INSPIRE]. · Zbl 1013.83027
[22] J. Barbon, I. Kogan and E. Rabinovici, On stringy thresholds in SYM/AdS thermodynamics, Nucl. Phys.B 544 (1999) 104 [hep-th/9809033] [INSPIRE]. · Zbl 0958.81114
[23] M. Li, E.J. Martinec and V. Sahakian, Black holes and the SYM phase diagram, Phys. Rev.D 59 (1999) 044035 [hep-th/9809061] [INSPIRE].
[24] O. Aharony, J. Marsano, S. Minwalla and T. Wiseman, Black hole-black string phase transitions in thermal 1+1 dimensional supersymmetric Yang-Mills theory on a circle, Class. Quant. Grav.21 (2004) 5169 [hep-th/0406210] [INSPIRE]. · Zbl 1062.83065
[25] S. Catterall, P.H. Damgaard, T. Degrand, R. Galvez and D. Mehta, Phase structure of lattice N = 4 super Yang-Mills, JHEP11 (2012) 072 [arXiv:1209.5285] [INSPIRE].
[26] J. Nishimura, The origin of space-time as seen from matrix model simulations, PTEP2012 (2012) 01A101 [arXiv:1205.6870] [INSPIRE]. · Zbl 07405523
[27] M. Hanada, Monte Carlo approach to the string/M-theory, PoS(LATTICE 2012)019 [arXiv:1212.2814] [INSPIRE].
[28] J. Hiller, O. Lunin, S. Pinsky and U. Trittmann, Towards a SDLCQ test of the Maldacena conjecture, Phys. Lett.B 482 (2000) 409 [hep-th/0003249] [INSPIRE]. · Zbl 1028.81515
[29] M. Campostrini and J. Wosiek, High precision study of the structure of D = 4 supersymmetric Yang-Mills quantum mechanics, Nucl. Phys.B 703 (2004) 454 [hep-th/0407021] [INSPIRE]. · Zbl 1198.81172
[30] J.R. Hiller, S.S. Pinsky, N. Salwen and U. Trittmann, Direct evidence for the Maldacena conjecture for N = (8, 8) super Yang-Mills theory in 1 + 1 dimensions, Phys. Lett.B 624 (2005) 105 [hep-th/0506225] [INSPIRE]. · Zbl 1247.81472
[31] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Monte Carlo studies of Matrix theory correlation functions, Phys. Rev. Lett.104 (2010) 151601 [arXiv:0911.1623] [INSPIRE].
[32] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity correspondence for Matrix theory correlation functions, JHEP12 (2011) 020 [arXiv:1108.5153] [INSPIRE]. · Zbl 1306.81107
[33] C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett.107 (2011) 171602 [arXiv:1104.5469] [INSPIRE].
[34] P. Riggins and V. Sahakian, On black hole thermalization, D0 brane dynamics and emergent spacetime, Phys. Rev.D 86 (2012) 046005 [arXiv:1205.3847] [INSPIRE].
[35] C.T. Asplund, D. Berenstein and E. Dzienkowski, Large-N classical dynamics of holographic matrix models, Phys. Rev.D 87 (2013) 084044 [arXiv:1211.3425] [INSPIRE].
[36] Y. Sekino and L. Susskind, Fast scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
[37] A. Smilga, Comments on thermodynamics of supersymmetric matrix models, Nucl. Phys.B 818 (2009) 101 [arXiv:0812.4753] [INSPIRE]. · Zbl 1194.81218
[38] Y. Okawa and T. Yoneya, Multibody interactions of D particles in supergravity and matrix theory, Nucl. Phys.B 538 (1999) 67 [hep-th/9806108] [INSPIRE]. · Zbl 0940.83026
[39] G.T. Horowitz and E.J. Martinec, Comments on black holes in matrix theory, Phys. Rev.D 57 (1998) 4935 [hep-th/9710217] [INSPIRE].
[40] M. Li, Matrix Schwarzschild black holes in large-N limit, JHEP01 (1998) 009 [hep-th/9710226] [INSPIRE]. · Zbl 0958.81064
[41] T. Banks, W. Fischler, I.R. Klebanov and L. Susskind, Schwarzschild black holes in matrix theory. 2., JHEP01 (1998) 008 [hep-th/9711005] [INSPIRE]. · Zbl 0955.83023
[42] N. Iizuka, D. Kabat, S. Roy and D. Sarkar, Black hole formation at the correspondence point, arXiv:1303.7278 [INSPIRE].
[43] H. Lin, The supergravity dual of the BMN matrix model, JHEP12 (2004) 001 [hep-th/0407250] [INSPIRE].
[44] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [INSPIRE].
[45] T. Wiseman and B. Withers, Holographic renormalization for coincident Dp-branes, JHEP10 (2008) 037 [arXiv:0807.0755] [INSPIRE]. · Zbl 1245.81230
[46] I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP09 (2008) 094 [arXiv:0807.3324] [INSPIRE]. · Zbl 1245.81187
[47] J. Ambjørn, Y. Makeenko and G. Semenoff, Thermodynamics of D0-branes in matrix theory, Phys. Lett.B 445 (1999) 307 [hep-th/9810170] [INSPIRE]. · Zbl 1058.81625
[48] K. Becker, M. Becker, J. Polchinski and A.A. Tseytlin, Higher order graviton scattering in M(atrix) theory, Phys. Rev.D 56 (1997) 3174 [hep-th/9706072] [INSPIRE].
[49] I. Buchbinder, S. Kuzenko and A.A. Tseytlin, On low-energy effective actions in N = 2, N = 4 superconformal theories in four-dimensions, Phys. Rev.D 62 (2000) 045001 [hep-th/9911221] [INSPIRE].
[50] I. Buchbinder, A.Y. Petrov and A.A. Tseytlin, Two loop N = 4 super Yang-Mills effective action and interaction between D3-branes, Nucl. Phys.B 621 (2002) 179 [hep-th/0110173] [INSPIRE]. · Zbl 0988.81073
[51] N. Ohta and J.-G. Zhou, Euclidean path integral, D0-branes and Schwarzschild black holes in matrix theory, Nucl. Phys.B 522 (1998) 125 [hep-th/9801023] [INSPIRE]. · Zbl 1047.81556
[52] R.C. Myers, Dielectric branes, JHEP12 (1999) 022 [hep-th/9910053] [INSPIRE]. · Zbl 0958.81091
[53] M. Costa, J. Penedones and J. Santos, to appear.
[54] S. Paban, S. Sethi and M. Stern, Constraints from extended supersymmetry in quantum mechanics, Nucl. Phys.B 534 (1998) 137 [hep-th/9805018] [INSPIRE]. · Zbl 1078.81532
[55] S. Paban, S. Sethi and M. Stern, Supersymmetry and higher derivative terms in the effective action of Yang-Mills theories, JHEP06 (1998) 012 [hep-th/9806028] [INSPIRE]. · Zbl 0955.81060
[56] D.A. Lowe, Constraints on higher derivative operators in the matrix theory effective Lagrangian, JHEP11 (1998) 009 [hep-th/9810075] [INSPIRE]. · Zbl 0949.81030
[57] S. Sethi and M. Stern, Supersymmetry and the Yang-Mills effective action at finite N, JHEP06 (1999) 004 [hep-th/9903049] [INSPIRE]. · Zbl 0961.81018
[58] T. Wiseman, Numerical construction of static and stationary black holes, arXiv:1107.5513 [INSPIRE]. · Zbl 1266.83005
[59] K. Becker and M. Becker, A two loop test of M(atrix) theory, Nucl. Phys.B 506 (1997) 48 [hep-th/9705091] [INSPIRE]. · Zbl 0925.81264
[60] A. Jevicki, Y. Kazama and T. Yoneya, Generalized conformal symmetry in D-brane matrix models, Phys. Rev.D 59 (1999) 066001 [hep-th/9810146] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.