×

Non-ergodicity of uniform quadratic stochastic operators. (English) Zbl 1344.37093

Summary: In this paper we consider a uniform extremal Volterra quadratic stochastic operator defined on an even-dimensional unit simplex, which corresponds to a balanced digraph, and show that such operator has the non-ergodicity property. We also reinterpret this result in the framework of zero-sum games obtaining that these operators correspond to rock-paper-scissors games.

MSC:

37N25 Dynamical systems in biology
91A22 Evolutionary games
91A60 Probabilistic games; gambling
37A50 Dynamical systems and their relations with probability theory and stochastic processes
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akin, E., Losert, V.: Evolutionary dynamics of zero-sum games. J. Math. Biol. 20(3), 231-258 (1984) · Zbl 0569.92014
[2] Bernstein, S.: Solution of a mathematical problem connected with the theory of heredity. Ann. Math. Stat. 13, 53-61 (1942) · Zbl 0063.00333
[3] Devaney, R.L.: An introduction to chaotic dynamical systems, Studies in Nonlinearity, Westview Press, Boulder, 2003, reprint of the second edition (1989) · Zbl 0695.58002
[4] Ganikhodjaev, N.N., Ganikhodjaev, R.N., Jamilov (Zhamilov), U.U.: Quadratic stochastic operators and zero-sum game dynamics, Ergod. Th. and Dynam. Sys. doi:10.1017/etds.2013.109 · Zbl 1352.37026
[5] Ganikhodjaev, N.N., Jamilov, U.U., Mukhitdinov, R.T.: On non-ergodic transformations on \[S^3\] S3. In: Journal of physics: conference series, vol. 435, IOP Publishing (2013) · Zbl 0521.92014
[6] Ganikhodzhaev, N.N.: Doctoral thesis (rehabilitation degree), Ph.D. thesis, Institute for low temperature physics and engineering academy of sciences of Ukraine, Kharkov (1991) · Zbl 1313.37014
[7] Ganikhodzhaev, N.N., Zanin, D.V.: On a necessary condition for the ergodicity of quadratic operators defined on a two-dimensional simplex. Russ. Math. Surv. 59(3), 571-572 (2004) · Zbl 1160.37307
[8] Ganikhodzhaev, N.N., Zanin, D.V.: Ergodic volterra quadratic transformations of symplex, arXiv:1205.3841 (in Russian) (2012) · Zbl 0519.92014
[9] Ganikhodzhaev, R.N.: Quadratic stochastic operators, Lyapunov functions and tournaments. Russ. Acad. Sci. Sb. Math. 76(2), 489-506 (1993) · Zbl 0791.47048
[10] Ganikhodzhaev, R.N.: Map of fixed points and Lyapunov functions for one class of discrete dynamical systems. Math. Notes. 56(5), 1125-1131 (1994) · Zbl 0838.93062
[11] Ganikhodzhaev, R.N.: Doctoral thesis (rehabilitation degree), Ph.D. thesis, National University of Uzbekistan, Tashkent (1995) · Zbl 0528.92013
[12] Ganikhodzhaev, R.N., Eshmamatova, D.B.: Quadratic automorphisms of a simplex and the asymptotic behavior of their trajectories. Vladikavkaz. Mat. Zh. 8(2), 12-28 (2006). (in Russian) · Zbl 1313.37014
[13] Ganikhodzhaev, R.N., Mukhamedov, F.M., Rozikov, U.A.: Quadratic stochastic operators and processes: results and open problems, Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 14(2), 279-335 (2011) · Zbl 1242.60067
[14] Harary, F.: Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, California, London, (1969) · Zbl 0182.57702
[15] Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge (1998) · Zbl 0914.90287
[16] Jenks, R.D.: Quadratic differential systems for interactive population models. J. Differ. Equ. 5, 497-514 (1969) · Zbl 0186.15801
[17] Kesten, H.: Quadratic transformations: a model for population growth. I. Adv. Appl. Probab. 2, 1-82 (1970) · Zbl 0328.92011
[18] Losert, V., Akin, E.: Dynamics of games and genes: discrete versus continuous time. J. Math. Biol. 17(2), 241-251 (1983) · Zbl 0519.92014
[19] Lyubich, Y.I.: Basic concepts and theorems of the evolutionary genetics of free populations. Russ. Math. Surv. 26(5), 51-123 (1971)
[20] Lyubich, Y.I.: Mathematical structures in population genetics, vol. 22 of Biomathematics. Springer, Berlin (1992) · Zbl 0747.92019
[21] Nagylaki, T.: Evolution of a finite population under gene conversion. Proc. Nat. Acad. Sci. U.S.A. 80, 6278-6281 (1983) · Zbl 0528.92013
[22] Nagylaki, T.: Evolution of a large population under gene conversion. Proc. Nat. Acad. Sci. U.S.A. 80, 5941-5945 (1983) · Zbl 0521.92014
[23] Ulam, S.M.: A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York (1960) · Zbl 0086.24101
[24] Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together in animal ecology. In: Chapman, R.N., (ed.) Animal ecology, McGrawHill, pp. 409-448 (1931)
[25] Zakharevich, M.I.: On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex. Russ. Math. Surv. 33(6), 265-266 (1978) · Zbl 0427.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.