Catino, Francesco; Colazzo, Ilaria; Stefanelli, Paola Regular subgroups of the affine group and asymmetric product of radical braces. (English) Zbl 1348.20002 J. Algebra 455, 164-182 (2016). M. W. Liebeck et al. [Mem. Am. Math. Soc. 952 (2010; Zbl 1198.20002)] asked for a classification of all pairs \((G,B)\) where \(G\) is a finite permutation group and \(B\) a regular subgroup. An interesting class of examples for the affine case was given by P. Hegedűs [J. Algebra 225, No. 2, 740-742 (2000; Zbl 0953.20040)]. The problem to classify regular subgroups of an affine group is equivalent to the classification of braces [F. Catino and R. Rizzo, Bull. Aust. Math. Soc. 79, No. 1, 103-107 (2009; Zbl 1184.20001)]. In the paper under review, the authors introduce the concept of asymmetric product of braces, a semidirect product twisted by a 2-cocycle. This sheds some light on Hegedűs’ construction. Reviewer: Wolfgang Rump (Stuttgart) Cited in 3 ReviewsCited in 29 Documents MSC: 20B15 Primitive groups 16N20 Jacobson radical, quasimultiplication Keywords:finite permutation groups; affine groups; regular subgroups; braces; asymmetric products Citations:Zbl 1198.20002; Zbl 0953.20040; Zbl 1184.20001 PDF BibTeX XML Cite \textit{F. Catino} et al., J. Algebra 455, 164--182 (2016; Zbl 1348.20002) Full Text: DOI References: [1] Aczél, J., On Applications and Theory of Functional Equations, Elem. Math. Höheren Standpkt., vol. V (1969), Birkhäuser Verlag: Birkhäuser Verlag Basel, Stuttgart · Zbl 0176.12801 [2] Bachiller, D., Classification of braces of order \(p^3\), J. Pure Appl. Algebra, 219, 8, 3568-3603 (2015) · Zbl 1312.81099 [3] Caranti, A.; Dalla Volta, F.; Sala, M., Abelian regular subgroups of the affine group and radical rings, Publ. Math. Debrecen, 69, 3, 297-308 (2006) · Zbl 1123.20002 [4] Catino, F.; Colazzo, I.; Stefanelli, P., On regular subgroups of the affine group, Bull. Aust. Math. Soc., 91, 1, 76-85 (2015) · Zbl 1314.20001 [5] Catino, F.; Rizzo, R., Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc., 79, 1, 103-107 (2009) · Zbl 1184.20001 [6] Cedó, F.; Jespers, E.; Okniński, J., Braces and the Yang-Baxter equation, Comm. Math. Phys., 327, 1, 101-116 (2014) · Zbl 1287.81062 [7] de Graaf, W. A., Classification of nilpotent associative algebras of small dimension, preprint · Zbl 1416.16052 [8] Hahn, A. J.; O’Meara, O. T., The Classical Groups and \(K\)-Theory, Grundlehren Math. Wiss., vol. 291 (1989), Springer-Verlag: Springer-Verlag Berlin, with a foreword by J. Dieudonné [9] Hegedűs, P., Regular subgroups of the affine group, J. Algebra, 225, 2, 740-742 (2000) · Zbl 0953.20040 [10] Liebeck, M. W.; Praeger, C. E.; Saxl, J., Transitive subgroups of primitive permutation groups, J. Algebra, 234, 2, 291-361 (2000), special issue in honor of Helmut Wielandt · Zbl 0972.20001 [11] Liebeck, M. W.; Praeger, C. E.; Saxl, J., Regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc., 203, 952 (2010), vi+74 pp · Zbl 1198.20002 [12] Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307, 1, 153-170 (2007) · Zbl 1115.16022 [13] Rump, W., Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, J. Algebra Appl., 7, 4, 471-490 (2008) · Zbl 1153.81505 [14] Rump, W., The brace of a classical group, Note Mat., 34, 1, 115-144 (2014) · Zbl 1344.14029 [15] Tamburini Bellani, M. C., Some remarks on regular subgroups of the affine group, Int. J. Group Theory, 1, 1, 17-23 (2012) · Zbl 1263.20049 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.