×

The efficient S-DDM scheme and its analysis for solving parabolic equations. (English) Zbl 1349.76499

Summary: In this paper, we develop and analyze the efficient splitting domain decomposition method for solving parabolic equations. The domain is divided into non-overlapping multi-block subdomains. On interfaces of sub-domains, the local multilevel explicit scheme is proposed to solve the interface values of solution, and then the splitting implicit scheme is proposed to solve the solution in interiors of subdomains. On the theoretical aspect, analyzing the S-DDM scheme over non-overlapping multi-block sub-domains is much challenging. We strictly prove the stability and convergence of the S-DDM scheme and obtain the optimal error estimates over non-overlapping multi-block subdomains. Numerical experiments are given to illustrate the accuracy and efficiency of the S-DDM scheme. The developed method takes the most attractive advantages of both the non-overlapping domain decomposition and the splitting technique, which overcomes the limitation of the stripe-divided sub-domains for parabolic equations in the previous methods. The developed S-DDM scheme reduces computational complexities, large memory requirements and computational costs.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), Applied Science Publisher, Ltd.: Applied Science Publisher, Ltd. London
[2] Bear, J., Hydraulics of Groundwater (1978), McGraw-Hill: McGraw-Hill New York
[3] Chen, Z.; Huang, G.; Ma, Y., Computational Methods for Multiphase Flows in Porous Media, Comput. Sci. Eng. Ser., vol. 2 (2006), SIAM: SIAM Philadelphia · Zbl 1092.76001
[4] Clavero, C.; Jorge, J. C.; Lisbona, F. J.; Shishkin, G. I., An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems, IMA J. Numer. Anal., 20, 263-280 (2000) · Zbl 0962.65080
[5] (Ewing, R. E., The Mathematics of Reservoir Simulation. The Mathematics of Reservoir Simulation, Front. Appl. Math., vol. 1 (1988)), 294-318
[6] Dawson, C. N.; Du, Q., A domain decomposition method for parabolic equations based on finite elements, (Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations. Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Moscow, 1990 (1991), SIAM: SIAM Philadelphia, PA), 255-263 · Zbl 0766.65078
[7] Dawson, C. N.; Du, Q.; Dupont, T. F., A finite difference domain decomposition algorithm for numerical solution of the heat equation, Math. Comput., 57, 63-71 (1991) · Zbl 0732.65091
[8] Douglas, J.; Peaceman, D., Numerical solution of two dimensional heat flow problem, Am. Inst. Chem. Eng. J., 1, 505-512 (1955)
[9] Douglas, J.; Kim, S., Improved accuracy for locally one-dimensional methods for parabolic equations, Math. Models Methods Appl. Sci., 11, 1563-1579 (2001) · Zbl 1012.65095
[10] Dryja, M.; Tu, X., A domain decomposition discretization of parabolic problems, Numer. Math., 107, 625-640 (2007) · Zbl 1130.65097
[11] Du, C.; Liang, D., An efficient S-DDM iterative approach for compressible contamination fluid flows in porous media, J. Comput. Phys., 229, 4501-4521 (2010) · Zbl 1305.76074
[12] Du, Q.; Mu, M.; Wu, Z. N., Efficient parallel algorithms for parabolic problems, SIAM J. Numer. Anal., 39, 1469-1487 (2001) · Zbl 1013.65090
[14] De Haas, P. C.A.; Zandbergen, P. J., The application of domain decomposition to time-domain computations of nonlinear water waves with a panel method, J. Comput. Phys., 129, 332-334 (1996) · Zbl 0868.76066
[15] Jun, Y.; Mai, T.-Z., ADI method: domain decomposition, Appl. Numer. Math., 56, 1092-1107 (2006) · Zbl 1099.65084
[16] Jun, Y.; Mai, T.-Z., IPIC domain decomposition algorithm for parabolic problems, Appl. Math. Comput., 177, 352-364 (2006) · Zbl 1094.65097
[17] Kuznetsov, Y. A., New algorithm for approximate realization of implicit difference schemes, Sov. J. Numer. Anal. Math. Model., 3, 99-114 (1988) · Zbl 0825.65066
[18] Laevsky, Y. M., A domain decomposition algorithm without overlapping subdomains for the solution of parabolic equations, Comput. Math. Math. Phys., 32, 1569-1580 (1992) · Zbl 0791.65073
[19] Liang, D.; Du, C.; Wang, H., A fractional step ELLAM approach to high dimensional convection diffusion problems with forward particle tracking, J. Comput. Phys., 221, 198-225 (2007) · Zbl 1110.65091
[20] Lions, P. L., On the Schwarz alternating method I, (Glowinskin, R.; Golub, G. H.; Meurant, G. A.; Periaux, J., Proceeding of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations. Proceeding of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Paris, 1987 (1988), SIAM: SIAM Philadelphia, USA), 1-42 · Zbl 0658.65090
[21] Lions, P. L., On the Schwarz alternating method II, (Chan, T.; Glowinskin, R.; Periaux, J.; Wildlund, O., Proceeding of the Second International Symposium on Domain Decomposition Methods for Partial Differential Equations. Proceeding of the Second International Symposium on Domain Decomposition Methods for Partial Differential Equations, Los Angeles, 1988 (1989), SIAM: SIAM Philadelphia, USA), 47-70 · Zbl 0681.65072
[22] Miller, J. H.; O’Riokdan, E.; Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems, Error Estimate in the Maximum Norm for Linear Problems in One and Two Dimensions (1996), World Scientific: World Scientific Singapore · Zbl 0915.65097
[23] Protter, M. H.; Weinberger, H. F., Maximum Principle in Differential Equations (1967), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0153.13602
[24] Portero, L.; Jorge, J. C., A generalization of Peaceman-Rachford fractional step method, J. Comput. Appl. Math., 189, 676-688 (2006) · Zbl 1086.65093
[25] Rivera, W.; Zhu, J.; Huddleston, D., An efficient parallel algorithm with application to computational fluid dynamics, J. Comput. Math. Appl., 45, 165-188 (2003) · Zbl 1035.65096
[26] Sheng, Z.-Q.; Yuan, G.-W.; Hang, X.-D., Unconditional stability of parallel difference schemes with second order accuracy for parabolic equations, Appl. Math. Comput., 184, 1015-1031 (2007) · Zbl 1121.65096
[27] Shi, H.-S.; Liao, H.-L., Unconditional stability of corrected explicit-implicit domain decomposition algorithms for parallel approximation of heat equations, SIAM J. Numer. Anal., 44, 1584-1611 (2006) · Zbl 1125.65087
[28] Smith, B. F.; Bjørst, P. E.; Gropp, W. D., Domain Decomposition Methods for Partial Differential Equations (1996), Cambridge University Press · Zbl 0857.65126
[29] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503
[30] Yanenko, N., The Method of Fractional Steps (1971), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, and New York · Zbl 0209.47103
[31] Zhu, L.-Y.; Yuan, G.-W.; Du, Q., An explicit-implicit predictor-corrector domain decomposition method for time dependent multi-dimensional convection diffusion equations, Numer. Math., Theory Methods Appl., 2, 301-325 (2009) · Zbl 1212.65369
[32] Zhuang, Y.; Sun, X., Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations, SIAM J. Sci. Comput., 24, 335-358 (2002) · Zbl 1013.65106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.