Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane A Newton method with adaptive finite elements for solving phase-change problems with natural convection. (English) Zbl 1351.76056 J. Comput. Phys. 274, 826-840 (2014). Summary: We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation. Cited in 18 Documents MSC: 76M10 Finite element methods applied to problems in fluid mechanics 76R10 Free convection Keywords:melting; solidification; water freezing; Newton method; finite element; mesh adaptivity; Boussinesq; Navier-Stokes; PCM; FreeFem++ Software:FreeFem++ PDF BibTeX XML Cite \textit{I. Danaila} et al., J. Comput. Phys. 274, 826--840 (2014; Zbl 1351.76056) Full Text: DOI References: [1] Faghri, A.; Zhang, Y., Transport Phenomena in Multiphase Systems (2006), Elsevier [2] Morgan, K., A numerical analysis of freezing and melting with convection, Comput. Methods Appl. Mech. Eng., 28, 3, 275-284 (1981) [3] Voller, V. R.; Prakash, C., A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat Mass Transf., 30, 8, 1709-1719 (1987) [4] Jany, P.; Bejan, A., Scaling theory of melting with natural convection in an enclosure, Int. J. Heat Mass Transf., 31, 6, 1221-1235 (1988) [5] Evans, K. J.; Knoll, D.; Pernice, M., Development of a 2-d algorithm to simulate convection and phase transition efficiently, J. Comput. Phys., 219, 1, 404-417 (2006) · Zbl 1102.76037 [6] Vidalain, G.; Gosselin, L.; Lacroix, M., An enhanced thermal conduction model for the prediction of convection dominated solid-liquid phase change, Int. J. Heat Mass Transf., 52, 1753-1760 (2009) · Zbl 1157.80372 [7] Wang, S.; Faghri, A.; Bergman, T. L., A comprehensive numerical model for melting with natural convection, Int. J. Heat Mass Transf., 53, 1986-2000 (2010) · Zbl 1190.80044 [8] Ma, Z.; Zhang, Y., Solid velocity correction schemes for a temperature transforming model for convection phase change, Int. J. Numer. Methods Heat Fluid Flow, 16, 11, 204-225 (2006) [9] Cao, Y.; Faghri, A.; Chang, W. S., A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model, Int. J. Heat Mass Transf., 32, 7, 1289-1298 (1989) · Zbl 0674.76072 [10] Cao, Y.; Faghri, A., A numerical analysis of phase change problem including natural convection, ASME J. Heat Transf., 112, 812-815 (1990) [11] Elliott, C., Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal., 7, 61-71 (1987) · Zbl 0638.65088 [12] Li, C. H., A finite-element front-tracking enthalpy method for Stefan problems, IMA J. Numer. Anal., 3, 87-107 (1983) · Zbl 0582.65086 [13] Tenchev, R. T.; Mackenzie, J. A.; Scanlon, T. J.; Stickland, M. T., Finite element moving mesh analysis of phase change problems with natural convection, Int. J. Heat Fluid Flow, 26, 4, 597-612 (2005) [14] Belhamadia, Y.; Fortin, A.; Chamberland, E., Anisotropic mesh adaptation for the solution of the Stefan problem, J. Comput. Phys., 194, 1, 233-255 (2004) · Zbl 1040.80007 [15] Belhamadia, Y.; Kane, A. S.; Fortin, A., An enhanced mathematical model for phase change problems with natural convection, Int. J. Numer. Anal. Model., 3, 2, 192-206 (2012) · Zbl 1376.80005 [16] Hecht, F.; Pironneau, O.; Hyaric, A. L.; Ohtsuke, K., FreeFem++ (manual) (2007) [17] Hecht, F., New developments in FreeFem++, J. Numer. Math., 20, 251-266 (2012) · Zbl 1266.68090 [18] Danaila, I.; Kazemi, P., A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation, SIAM J. Sci. Comput., 32, 2447-2467 (2010) · Zbl 1216.35006 [19] Danaila, I.; Hecht, F., A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates, J. Comput. Phys., 229, 6946-6960 (2010) · Zbl 1198.82035 [20] Zhang, Y.; Danaila, I., Existence and numerical modelling of vortex rings with elliptic boundaries, Appl. Math. Model., 37, 4809-4824 (2013) · Zbl 1438.76009 [21] Dennir, J. E.; Schmabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1986), Prentice Hall: Prentice Hall Englewood Cliffs, NJ [22] Sheu, T. W.H.; Lin, R. K., Newton linearization of the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 44, 3, 297-312 (2004) · Zbl 1035.76038 [23] Sheu, T. W.H.; Lin, R. K., On a high-order Newton linearization method for solving the incompressible Navier-Stokes equations, Int. J. Numer. Methods Eng., 62, 11, 1559-1578 (2005) · Zbl 1078.76579 [24] Chen, Z.; Shih, T.; Yue, X., Numerical methods for Stefan problems with prescribed convection and nonlinear flux, IMA J. Numer. Anal., 20, 81-98 (2000) · Zbl 0947.65107 [25] Kowalewski, T. A.; Rebow, M., Freezing of water in differentially heated cubic cavity, Int. J. Comput. Fluid Dyn., 11, 193-210 (1999) · Zbl 0947.76553 [26] Voller, V. R.; Cross, M.; Markatos, N. C., An enthalpy method for convection/diffusion phase change, Int. J. Numer. Methods Eng., 24, 1, 271-284 (1987) · Zbl 0609.76104 [27] Brent, A. D.; Voller, V. R.; Reid, K. J., Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numer. Heat Transf., 13, 3, 297-318 (1988) [28] Jin, W.; Tao, W.; He, Y.; Li, Z., Analysis of inconsistency of simple-like algorithms and an entirely consistent update technique—the cut algorithm, Numer. Heat Transf., Part B, 53, 289-312 (2008) [29] Sheng, Z.; Thiriet, M.; Hecht, F., An efficient numerical method for the equations of steady and unsteady flows of homogeneous incompressible newtonian fluid, J. Comput. Phys., 230, 551-571 (2011) · Zbl 1283.76019 [30] Bukshtynov, V.; Protas, B., Optimal reconstruction of material properties in complex multiphysics phenomena, J. Comput. Phys., 242, 889-914 (2013) · Zbl 1427.80016 [31] Pironneau, O.; Liou, J.; Tezduyar, T., Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equations with time-dependent domains, Comput. Methods Appl. Mech. Eng., 100, 117-141 (1992) · Zbl 0761.76073 [32] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis (1983), SIAM: SIAM Philadelphia · Zbl 0522.35002 [33] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0413.65081 [34] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1994), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0852.76051 [35] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids, 1, 73-100 (1973) · Zbl 0328.76020 [36] George, P. L.; Borouchaki, H., Delaunay Triangulation and Meshing (1998), Hermès: Hermès Paris [37] Frey, P. J.; George, P. L., Maillages (1999), Hermès: Hermès Paris [38] Castro-Diaz, M.; Hecht, F.; Mohammadi, B., Anisotropic grid adaptation for inviscid and viscous flows simulations, Int. J. Numer. Methods Fluids, 25, 475-491 (2000) · Zbl 0902.76057 [39] Hecht, F.; Mohammadi, B., Mesh adaptation by metric control for multi-scale phenomena and turbulence, (AIAA Paper 97 (1997)), 0859 [40] Mohammadi, B.; Pironneau, O., Applied Shape Design for Fluids (2000), Oxford Univ. Press · Zbl 1018.76039 [41] Belhamadia, Y.; Fortin, A.; Chamberland, E., Three-dimensional anisotropic mesh adaptation for phase change problems, J. Comput. Phys., 201, 2, 753-770 (2004) · Zbl 1061.65095 [42] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344 (1984) · Zbl 0593.76039 [43] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002 [44] Queré, P. L., Accuratte solutions to the square thermally driven cavity at high Rayleigh number, Comput. Fluids, 20, 24-41 (1991) · Zbl 0731.76054 [45] Gebhart, B.; Mollendorf, J., A new density relation for pure and saline water, Deep-Sea Res., 24, 831-848 (1977) [46] Scanlon, T. J.; Stickland, M. T., A numerical analysis of buoyancy-driven melting and freezing, Int. J. Heat Mass Transf., 47, 429-436 (2004) [47] Giangi, M.; Kowalewski, T. A.; Stella, F.; Leonardi, E., Natural convection during ice formation: numerical simulation vs. experimental results, Comput. Assist. Mech. Eng. Sci., 7, 321-342 (2000) · Zbl 0953.76587 [48] Michalek, T.; Kowalewski, T. A., Simulations of the water freezing process — numerical benchmarks, Task Q., 7, 3, 389-408 (2003) [49] Okada, M., Analysis of heat transfer during melting from a vertical wall, Int. J. Heat Mass Transf., 27, 2057-2066 (1984) · Zbl 0555.76083 [50] Safa, Y.; Flueck, M.; Rappaz, J., Numerical simulation of thermal problems coupled with magnetohydrodynamic effects in aluminium cell, Appl. Math. Model., 1479-1492 (2009) · Zbl 1168.76354 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.