Guo, Yan; Xiong, Tao; Shi, Yufeng A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations. (English) Zbl 1351.76108 J. Comput. Phys. 274, 505-523 (2014). Summary: In this paper, a positivity-preserving fifth-order finite volume compact-WENO scheme is proposed for solving compressible Euler equations. As it is known, conservative compact finite volume schemes have high resolution properties while WENO (Weighted Essentially Non-Oscillatory) schemes are essentially non-oscillatory near flow discontinuities. We extend the idea of WENO schemes to some classical finite volume compact schemes [S. Pirozzoli, ibid. 178, No. 1, 81–117 (2002; Zbl 1045.76029)], where lower order compact stencils are combined with WENO nonlinear weights to get a higher order finite volume compact-WENO scheme. The newly developed positivity-preserving limiter [X. Zhang and C.-W. Shu, ibid. 229, No. 23, 8918–8934 (2010; Zbl 1282.76128); Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 467, No. 2134, 2752–2776 (2011; Zbl 1222.65107)] is used to preserve positive density and internal energy for compressible Euler equations of fluid dynamics. The HLLC (Harten, Lax, and van Leer with Contact) approximate Riemann solver [E. F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction. 3rd ed. Berlin: Springer (2009; Zbl 1227.76006); P. Batten et al., SIAM J. Sci. Comput. 18, No. 6, 1553–1570 (1997; Zbl 0992.65088)] is used to get the numerical flux at the cell interfaces. Numerical tests are presented to demonstrate the high-order accuracy, positivity-preserving, high-resolution and robustness of the proposed scheme. Cited in 22 Documents MSC: 76M12 Finite volume methods applied to problems in fluid mechanics 65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs 76Nxx Compressible fluids and gas dynamics Keywords:compact scheme; finite volume; weighted essentially non-oscillatory scheme; positivity-preserving; compressible Euler equations Citations:Zbl 1045.76029; Zbl 1282.76128; Zbl 1222.65107; Zbl 1227.76006; Zbl 0992.65088 Software:HE-E1GODF PDF BibTeX XML Cite \textit{Y. Guo} et al., J. Comput. Phys. 274, 505--523 (2014; Zbl 1351.76108) Full Text: DOI arXiv OpenURL References: [1] Adams, N.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51, (1996) · Zbl 0859.76041 [2] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-7517, (2012) [3] Balsara, D. S.; Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452, (2000) · Zbl 0961.65078 [4] Batten, P.; Clarke, N.; Lambert, C.; Causon, D., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553-1570, (1997) · Zbl 0992.65088 [5] Borges, R.; Carmona, M.; Costa, B.; Don, W., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 3191-3211, (2008) · Zbl 1136.65076 [6] Castro, M.; Costa, B.; Don, W., High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws, J. Comput. Phys., 230, 1766-1792, (2011) · Zbl 1211.65108 [7] Cheng, J.; Shu, C.-W., Positivity-preserving Lagrangian scheme for multi-material compressible flow, J. Comput. Phys., 257, 143-168, (2014) · Zbl 1349.76439 [8] Cockburn, B.; Shu, C.-W., Nonlinearly stable compact schemes for shock calculations, SIAM J. Numer. Anal., 31, 607-627, (1994) · Zbl 0805.65085 [9] Deng, X.; Maekawa, H., Compact high-order accurate nonlinear schemes, J. Comput. Phys., 130, 77-91, (1997) · Zbl 0870.65075 [10] Deng, X.; Zhang, H., Developing high-order weighted compact nonlinear schemes, J. Comput. Phys., 165, 22-44, (2000) · Zbl 0988.76060 [11] Einfeldt, B.; Munz, C.-D.; Roe, P. L.; Sjögreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 273-295, (1991) · Zbl 0709.76102 [12] Estivalezes, J.; Villedieu, P., High-order positivity-preserving kinetic schemes for the compressible Euler equations, SIAM J. Numer. Anal., 33, 2050-2067, (1996) · Zbl 0863.35081 [13] Ghosh, D.; Baeder, J., Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws, SIAM J. Sci. Comput., 34, 1678-1706, (2012) · Zbl 1387.65085 [14] Godunov, S. K., A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations, Mat. Sb., 89, 271-306, (1959) · Zbl 0171.46204 [15] Gong, Y.; Long, Y. X., LU method for solving block tridiagonal matrix equations and its applications, J. Dalian Univ. Technol., 37, 406-409, (1997) · Zbl 0916.65024 [16] Gottlieb, S.; Ketcheson, D.; Shu, C.-W., High order strong stability preserving time discretizations, J. Sci. Comput., 38, 251-289, (2009) · Zbl 1203.65135 [17] Gressier, J.; Villedieu, P.; Moschetta, J.-M., Positivity of flux vector splitting schemes, J. Comput. Phys., 155, 199-220, (1999) · Zbl 0953.76064 [18] Hu, X. Y.; Adams, N. A.; Shu, C.-W., Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, J. Comput. Phys., 242, 169-180, (2013) · Zbl 1311.76088 [19] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065 [20] Jiang, L.; Shan, H.; Liu, C., Weighted compact scheme for shock capturing, Int. J. Comput. Fluid Dyn., 15, 147-155, (2001) · Zbl 1044.76046 [21] Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., 7, 159-193, (1954) · Zbl 0055.19404 [22] Lele, S., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42, (1992) · Zbl 0759.65006 [23] LeVeque, R. J., Finite volume methods for hyperbolic problems, vol. 31, (2002), Cambridge University Press [24] Liu, W.; Cheng, J.; Shu, C.-W., High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations, J. Comput. Phys., 228, 8872-8891, (2009) · Zbl 1287.76181 [25] Liu, X.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212, (1994) · Zbl 0811.65076 [26] Liu, X.; Zhang, S.; Zhang, H.; Shu, C.-W., A new class of central compact schemes with spectral-like resolution I: linear schemes, J. Comput. Phys., 248, 235-256, (2013) · Zbl 1349.76504 [27] Loubère, R.; Shashkov, M. J., A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods, J. Comput. Phys., 209, 105-138, (2005) · Zbl 1329.76236 [28] Perthame, B., Boltzmann type schemes for gas dynamics and the entropy property, SIAM J. Numer. Anal., 27, 1405-1421, (1990) · Zbl 0714.76078 [29] Perthame, B.; Shu, C.-W., On positivity preserving finite volume schemes for Euler equations, Numer. Math., 73, 119-130, (1996) · Zbl 0857.76062 [30] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J. Comput. Phys., 178, 81-117, (2002) · Zbl 1045.76029 [31] Ren, Y.; Liu, M.; Zhang, H., A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws, J. Comput. Phys., 192, 365-386, (2003) · Zbl 1037.65090 [32] Shen, Y.; Yang, G.; Gao, Z., High-resolution finite compact difference schemes for hyperbolic conservation laws, J. Comput. Phys., 216, 114-137, (2006) · Zbl 1093.65085 [33] Shu, C., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, (1998)), 325-432 · Zbl 0927.65111 [34] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83, 32-78, (1989) · Zbl 0674.65061 [35] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31, (1978) · Zbl 0387.76063 [36] Tao, T.; Xu, K., Gas-kinetic schemes for the compressible Euler equations: positivity-preserving analysis, Z. Angew. Math. Phys., 50, 258-281, (1999) · Zbl 0958.76080 [37] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction, (2009), Springer · Zbl 1227.76006 [38] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173, (1984) · Zbl 0573.76057 [39] Xiong, T.; Qiu, J.-M.; Xu, Z., Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations, (2013), submitted [40] Zhang, S.; Deng, X.; Mao, M.; Shu, C., Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes, Acta Math. Appl. Sin., 29, 449-464, (2013) · Zbl 1279.65102 [41] Zhang, S.; Jiang, S.; Shu, C., Development of nonlinear weighted compact schemes with increasingly higher order accuracy, J. Comput. Phys., 227, 7294-7321, (2008) · Zbl 1152.65094 [42] Zhang, X.; Shu, C., Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, Math. Phys. Eng. Sci., 467, 2752-2776, (2011) · Zbl 1222.65107 [43] Zhang, X.; Shu, C.-W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918-8934, (2010) · Zbl 1282.76128 [44] Zhang, X.; Shu, C.-W., Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms, J. Comput. Phys., 230, 1238-1248, (2011) · Zbl 1391.76375 [45] Zhang, X.; Shu, C.-W., Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, J. Comput. Phys., 231, 2245-2258, (2012) · Zbl 1426.76493 [46] Zhang, X.; Xia, Y.; Shu, C.-W., Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes, J. Sci. Comput., 50, 29-62, (2012) · Zbl 1247.65131 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.