×

A non-linear non-weight method for multi-criteria decision making. (English) Zbl 1357.90066

Summary: We apply the Perron theorem in multi-attribute decision making. We create a comparison matrix for decision alternatives and prove that the matrix is almost-always primitive. We use the limiting power of the matrix multiplied by a standard vector, which leads to a positive eigenvector of the matrix, as the ranking vector for decision alternatives. The proposed method does not require domain experts to assign weights for decision criteria as usually demanded by the weighted-sum model. The new method is simple to use and generates reasonable result as illustrated by an example of ranking best hospitals over twelve criteria. We also demonstrate that the weightedsum methods may not be able to reveal all possible rankings. We give one example showing that a weighted-sum method collapsed thirteen distinct rankings into a single ranking and another example showing that the weighted-sum methods could not produce the ranking that is unrenderable by linear functions.

MSC:

90B50 Management decision making, including multiple objectives

Software:

ADDIS; PREFDIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Austin, D. (2008). How Google finds your needle in the web’s haystack. AMS Feature Column. http://www.ams.org/samplings/feature-column/fcarc-pagerank. Accessed 28 April 2016. · Zbl 0994.90083
[2] Berman, A., & Plemmons, R. (1979). Nonnegative matrices in the mathematical sciences. Cambridge: Academic Press. · Zbl 0484.15016
[3] Brans, J.; Mareschal, B.; Vincke, P.; Brans, J. (ed.), PROMETHEE: A new family of outranking methods in multicriteria analysis, 477-490 (1984), Amsterdam · Zbl 0571.90042
[4] Figueira, J., Greco, S., & Ehrgott, M. (Eds.). (2005). Multiple criteria decision analysis: State of the art surveys. New York: Springer. · Zbl 1060.90002
[5] Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications; A state-of the-art survey. New York: Springer. · Zbl 0453.90002 · doi:10.1007/978-3-642-48318-9
[6] Keener, J. P. (1993). The Perron-Frobenius theorem and the ranking of football teams. SIAM Review, 35(1), 80-93. · Zbl 0788.62064 · doi:10.1137/1035004
[7] Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley. · Zbl 0488.90001
[8] Köksalan, M., Wallenius, J., & Zionts, S. (2011). Multiple criteria decision making: From early history to the 21st century. Singapore: World Scientific. · doi:10.1142/8042
[9] Langville, A. N., & Meyer, C. (2012). Google’s PageRank and beyond: The science of search engine rankings. Princeton: Princeton University Press. · Zbl 1270.68005
[10] McGinley, P. (2014). Decision analysis software survey. OR/MS Today.
[11] Olmsted, M., Geisen, E., Murphy, J., Bell, D., Morley, M. & Stanley, M. (2014). Methodology: U.S. news & world report: Best hospitals 2014-15. http://www.usnews.com/pubfiles/BH_2014_Methodology_Report_Final_Jul14.pdf. Accessed 28 January 2015.
[12] Opricovic, S., & Tzeng, G.-H. (2004). The compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. · Zbl 1056.90090 · doi:10.1016/S0377-2217(03)00020-1
[13] Ozdemir, M. S. (2005). Validity and inconsistency in the analytic hierarchy process. Applied Mathematics and Computation, 161(3), 707-720. · Zbl 1085.62006 · doi:10.1016/j.amc.2003.12.099
[14] Pereira, V. & Costa, H. G. (2014). Nonlinear programming applied to the reduction of inconsistency in the AHP method. Annals of Operations Research. doi:10.1007/s10479-014-1750-z. · Zbl 1318.90040
[15] Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57. · doi:10.1016/j.omega.2014.11.009
[16] Roy, B. (1968). Classement et choix en presence de points de vue multiples (la méthode ELECTRE). RIRO, 8, 57-75.
[17] Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31(1), 49-73. · doi:10.1007/BF00134132
[18] Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. · Zbl 0372.62084 · doi:10.1016/0022-2496(77)90033-5
[19] Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9-26. · Zbl 0707.90002 · doi:10.1016/0377-2217(90)90057-I
[20] Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process. Pittsburgh, Pennsylvania: RWS Publications.
[21] Triantaphyllou, E. (2000). Multi-criteria decision making methods: A comparative study. US: Springer. · Zbl 0980.90032 · doi:10.1007/978-1-4757-3157-6
[22] van Valkenhoef, G., Tervonen, T., Zwinkels, T., de Brock, B., & Hillege, H. (2013). ADDIS: A decision support system for evidence-based medicine. Decision Support Systems, 55(2), 459-475. · doi:10.1016/j.dss.2012.10.005
[23] Xu, X. (2001). The SIR method: A superiority and inferiority ranking method for multiple criteria decision making. European Journal of Operational Research, 131(3), 587-602. · Zbl 0994.90083 · doi:10.1016/S0377-2217(00)00101-6
[24] Zopounidis, C., & Doumpos, M. (2000). PREFDIS: A multicriteria decision support system for sorting decision problems. Computers & Operations Research, 27(7-8), 779-797. · Zbl 0972.90037 · doi:10.1016/S0305-0548(99)00118-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.