×

Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. (English) Zbl 1358.70016

Summary: A novel computational approach for the dynamic analysis of a large scale rigid-flexible multibody system composed of composite laminated plates is proposed. The rigid parts in the system are described through the Natural Coordinate Formulation (NCF) and the flexible bodies in the system are modeled via the finite elements of Absolute Nodal Coordinate Formulation (ANCF), which can lead to a constant mass matrix for the derived system equation of motion. For modeling composite laminated plates accurately, a new composite laminated plate element of ANCF is proposed and the corresponding efficient formulations for evaluating both the elastic force and its Jacobian of the element are derived from the first Piola-Kirchhoff stress tensor. To improve computational efficiency, the sparse matrix technology and graph theory are used to solve the huge set of linear algebraic equations in the process of integrating the equations of motion by using the generalized-\(\mathbf a\) method, and an OpenMP based parallel scheme is also introduced. Finally, the effectiveness of the proposed approach is validated through two numerical examples. One is the static simulation of a single composite laminated plate under gravity and the other is the dynamic simulations of unfolding process of a satellite system with a pair of complicated antennas.

MSC:

70E55 Dynamics of multibody systems
74A40 Random materials and composite materials
74K20 Plates

Software:

symrcm; CSparse
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shabana, A.A.: Flexible multibody dynamics review of past and recent development. Multibody Syst. Dyn. 1, 189–222 (1997) · Zbl 0893.70008 · doi:10.1023/A:1009773505418
[2] Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical report. No. MBS96-1-UIC, University of Illinois at Chicago (1996)
[3] Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. J. Mech. Des. 122, 498–507 (2000) · doi:10.1115/1.1289636
[4] Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001) · doi:10.1115/1.1410100
[5] García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007) · Zbl 1193.74148 · doi:10.1007/s11071-006-9155-4
[6] Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 287–306 (2008) · Zbl 1347.74049 · doi:10.1007/s11044-008-9120-8
[7] Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009) · doi:10.1016/j.compstruc.2009.03.006
[8] Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2009) · Zbl 1194.70013 · doi:10.1007/s11071-009-9610-0
[9] Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–47 (2011) · Zbl 1355.70014 · doi:10.1007/s11071-010-9843-y
[10] He, J., Lilley, C.M.: The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Comput. Mech. 44, 395–403 (2009) · Zbl 1166.74038 · doi:10.1007/s00466-009-0380-9
[11] Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation plate problem. Int. J. Numer. Methods Eng. 40, 2775–2790 (1997) · Zbl 0897.73068 · doi:10.1002/(SICI)1097-0207(19970815)40:15<2775::AID-NME189>3.0.CO;2-#
[12] Mikkolaa, A.M., Shabana, A.A.: Non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003) · Zbl 1183.74295 · doi:10.1023/A:1022950912782
[13] Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 345–355 (2005)
[14] Gruttmann, F., Wagner, W., Meyer, L., Wriggers, P.: A nonlinear composite shell element with continuous interlaminar shear stresses. Comput. Mech. 13, 175–188 (1993) · Zbl 0786.73072 · doi:10.1007/BF00370134
[15] Kremer, J.M., Shabana, A.A., Widera, G.E.O.: Large reference displacement analysis of composite plates part I: finite element formulation. Int. J. Numer. Methods Eng. 36, 1–16 (1993) · Zbl 0825.73838 · doi:10.1002/nme.1620360102
[16] Kremer, J.M., Shabana, A.A., Widera, G.E.O.: Large reference displacement analysis of composite plates part II: computer implementation. Int. J. Numer. Methods Eng. 36, 17–42 (1993) · Zbl 0825.73839 · doi:10.1002/nme.1620360103
[17] Madenci, E., Barut, A.: Dynamic response of thin composite shells experiencing nonlinear elastic deformances coupling with large and rapid overall motions. Int. J. Numer. Methods Eng. 39, 2695–2723 (1996) · Zbl 0873.73073 · doi:10.1002/(SICI)1097-0207(19960830)39:16<2695::AID-NME955>3.0.CO;2-1
[18] Neto, M.A., Ambrosio, J.A.C., Leal, R.P.: Flexible multibody systems models using composite materials components. Multibody Syst. Dyn. 12, 385–405 (2004) · Zbl 1174.70310 · doi:10.1007/s11044-004-0911-2
[19] Neto, M.A., Ambrosio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 195, 6860–6873 (2005) · Zbl 1120.74513 · doi:10.1016/j.cma.2005.08.009
[20] Ambrosio, J.A.C., Neto, M.A., Leal, R.P.: Optimization of a complex flexible multibody systems with composite materials. Multibody Syst. Dyn. 18, 117–144 (2007) · Zbl 1132.74034 · doi:10.1007/s11044-007-9086-y
[21] Garcia-Callejo, D., Mayo, J., Escalona, J.L., Dominguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004) · Zbl 1068.74517 · doi:10.1023/B:NODY.0000027747.41604.20
[22] Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: Proceedings of the Multibody Dynamics Eccomas thematic Conference, Madrid (2005)
[23] Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008) · Zbl 1153.74001
[24] Bischof, C.H., Bucker, H.M., Naumann, U., Hovland, P., Utke, J.: Advances in Automatic Differentiation. Springer, Heidelberg (2008) · Zbl 1143.65003
[25] García De Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge. Springer, New York (1994)
[26] García De Jalón, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15–33 (2007) · Zbl 1180.70014 · doi:10.1007/s11044-007-9068-0
[27] García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid–flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20, 1–28 (2008) · Zbl 1341.70006 · doi:10.1007/s11044-008-9103-9
[28] Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987) · Zbl 0634.73056
[29] Bathe, K.J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996) · Zbl 0994.74001
[30] Shabana, A.A.: Computational Dynamics. Wiley, Singapore (2010)
[31] Lim, J.H., Yim, H.J., Lim, S.H., Park, T.: A study on numerical solution method for efficient dynamic analysis of constrained multibody systems. J. Mech. Sci. Technol. 22, 714–721 (2008) · doi:10.1007/s12206-007-1117-3
[32] Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006) · Zbl 1119.65021
[33] Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of 24th National Conference ACM, pp. 157–172 (1969)
[34] Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education, Boston (2004)
[35] Wriggers, P., Boersma, A.: A parallel algebraic multigrid solver for problems in solid mechanics discretisized by finite elements. Comput. Struct. 69, 129–137 (1998) · Zbl 0941.74073 · doi:10.1016/S0045-7949(98)00053-4
[36] Duan, S., Anderson, K.S.: Parallel implementation of a low order algorithm for dynamics of multibody systems on a distributed memory computing system. Eng. Comput. 16, 96–108 (2000) · Zbl 1049.70002 · doi:10.1007/PL00007191
[37] Malczyk, P., Fraczek, J.: Cluster computing of mechanisms dynamics using recursive formulation. Multibody Syst. Dyn. 20, 177–196 (2008) · Zbl 1347.70001 · doi:10.1007/s11044-008-9115-5
[38] Bauchau, O.A.: Parallel computation approaches for flexible multibody dynamic simulations. J. Franklin Inst. 347, 53–68 (2010) · Zbl 1298.65200 · doi:10.1016/j.jfranklin.2009.10.001
[39] Gonzalez, F., Luaces, A., Lugris, U., Gonzalez, M.: Non-intrusive parallelization of multibody system dynamic simulations. Comput. Mech. 44, 493–504 (2009) · Zbl 1169.70002 · doi:10.1007/s00466-009-0386-3
[40] Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008) · Zbl 1184.74003
[41] Kollar, L.P., Spriner, G.S.: Mechanics of Composite Structures. Cambridge University Press, Cambridge (2003)
[42] Arnold, M., Brüls, O.: Convergence of the generalized-a scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007) · Zbl 1121.70003 · doi:10.1007/s11044-007-9084-0
[43] George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981) · Zbl 0516.65010
[44] Chung, J., Hulbert, G.: A time integer algorithm for structure dynamics with improved numerical dissipation: The generalized-a method. J. Appl. Mech. 60, 371–375 (1993) · Zbl 0775.73337 · doi:10.1115/1.2900803
[45] Hermanns, M.: Parallel programming in Fortran 95 using OpenMP. http://www.openmp.org/presentations/miguel/F95_OpenMPv1_v2.pdf (2002)
[46] Anantharaman, M.: The dynamic analysis of flexible mechanisms using finite element methods. Dissertation, University of Stuttgart (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.