×

A class of Boehmians for a recent generalization of Hankel-Clifford transformation of arbitrary order. (English) Zbl 1365.46034

The smallest generalization of distribution spaces is known as the Boehmians that is initiated by the study of regular operators. The class of Boehmians contains all regular operators, all distributions, and some objects that are neither operators nor distributions. Equations (2) and (3) define the Hankel-Clifford transformation, studied by J. M. R. Méndez Pérez and M. M. Socas Robayna [J. Math. Anal. Appl. 154, No. 2, 543–557 (1991; Zbl 0746.46031)], which is considered in the present paper. The generalized version of the said transform is given by equations (4) and (5), and its inversion is suggested in equations (6) and (7). Boehmian spaces of arbitrary order and their convergence are studied in Section 2. The generalized Hankel-Clifford transformation of arbitrary order is studied in Section 3, where Theorem 15 represents an isomorphism mapping and convergence (the so-called and well-known \(\delta\) (delta) and \(\Delta\) (cap. delta)-convergence) with respect to a particular Boehmian space for the Hankel-Clifford transformation. Inversions of the same are also discussed. Definitions of Boehmians and terminologies used in the paper are borrowed from some of the fundamental references cited in it.

MSC:

46F12 Integral transforms in distribution spaces
44A99 Integral transforms, operational calculus

Citations:

Zbl 0746.46031
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Boehme, TK, The support of mikusinski operators, Trans. Am. Math. Soc., 176, 319-334, (1973) · Zbl 0268.44005
[2] Al-Omari, SKQ, On the generalized double sumudu transforms of distributions and space of boehmians, Int. J. Algebr., 6, 139-146, (2012)
[3] Karunakaran, V; Angeline, R, Gelfand transform for a Boehmian space of analytic functions, Ann. Pol. Math., 101, 39-45, (2011) · Zbl 1238.46044
[4] Beardsley, J; Mikusinski, P, A sheaf of boehmians, Ann. Pol. Math., 107, 293-307, (2013) · Zbl 1275.46027
[5] Al-Omari, SKQ, Distributional and tempered distributional diffraction fresnel transforms and their extension to Boehmian spaces, Ital. J. Pure Appl. Math., 30, 179-194, (2013) · Zbl 1333.46038
[6] Al-Omari, SKQ, A note on \(F_{a}^{b}\) transformation of generalized functions, Int. J. Pure Appl. Math., 86, 19-33, (2013)
[7] Mikusinski, P, Fourier transform for integrable boehmians, Rocky Mt. J. Math., 17, 577-582, (1987) · Zbl 0629.44005
[8] Mikusinski, P, Tempered boehmians and ultradistributions, Proc. Amer. Math. Soc., 123, 813-817, (1995) · Zbl 0821.46053
[9] Mikusinski, P, Convergence of boehmians, Japan. J. Math., 9, 159-179, (1983) · Zbl 0524.44005
[10] Al-Omari, SKQ; Loonker, D; Banerji, PK; Kalla, SL, Fourier sine (cosine) transform for ultradistributions and their extensions to tempered and Ultraboehmian spaces, Integ. Trans. Spl. Funct., 19, 453-462, (2008) · Zbl 1215.42007
[11] Al-Omari, S.K.Q.: On a generalized Meijer-Laplace transforms of Fox function type kernels and their extension to a class of Boehmians. Georgian J. Math. In Press (2015) · Zbl 1207.44005
[12] Al-Omari, S. K. Q.,Kilicman, A.: Note on Boehmians for class of optical Fresnel wavelet transforms. J. Funct. Spaces Appl. 2012. Article ID 405368. doi:10.1155/2012/405368 (2012) · Zbl 1266.46030
[13] Al-Omari, S.K.Q., Kilicman, A.: On generalized Hartley-Hilbert and Fourier-Hilbert transforms. Adv. Differ. Equ. 2012, 232 (2012). doi:10.1186/1687-1847-2012-232, 1-12(2012) · Zbl 1381.42006
[14] Al-Omari, S.K.Q., Kilicman, A.: On diffraction Fresnel transforms for Boehmians. Abstr. Appl. Anal. 2011, 1-13 (2011). Article ID 712746 · Zbl 1243.46032
[15] Al-Omari, SKQ, On the application of natural transforms, Int. J. Pure Appl. Math., 85, 729-744, (2013) · Zbl 1335.11038
[16] Al-Omari, SKQ, Hartley transforms on certain space of generalized functions, Georgian Math. J., 20, 415-426, (2014) · Zbl 1277.42003
[17] Al-Omari, S. K. Q., Kilicman, A.: Note on Boehmians for class of optical Fresnel wavelet transforms. J. Funct. Spaces Appl. 2012. Article ID 405368. doi:10.1155/2012/405368 (2012) · Zbl 1266.46030
[18] Al-Omari, S.K.Q., Kilicman, A.: On generalized Hartley-Hilbert and Fourier-Hilbert transforms. Adv. Differ. Equ. 2012, 232 (2012). doi:10.1186/1687-1847-2012-232, 1-12(2012) · Zbl 1381.42006
[19] Al-Omari, S.K.Q., Kilicman, A.: An estimate of Sumudu transform for Boehmians. Adv. Differ. Equ. 2013, 77 (2013) · Zbl 1380.46021
[20] Loonker, D; Banerji, PK, Wavelet transform of fractional integrals for integrable boehmians, Appl. Appl. Math., 5, 1-10, (2010) · Zbl 1194.42045
[21] Al-Omari, S.K.Q., Kilicman, A.: Unified treatment of the Kratzel transformation for generalized functions. Abstr. Appl. Anal. 2013. Article ID 750524, 1-12 (2013) · Zbl 1286.46045
[22] Al-Omari, S.K.Q., Kilicman, A.: Some remarks on the extended Hartley-Hilbert and Fourier-Hilbert transforms of Boehmians. Abstr. Appl. Anal. 2013. Article ID 348701 (2013) · Zbl 1275.42004
[23] Al-Omari, SKQ, Distributional and tempered distributional diffraction fresnel transforms and their extension to Boehmian spaces, Ital. J. Pure Appl. Math., 30, 179-194, (2013) · Zbl 1333.46038
[24] Bhuvaneswari, R; Karunakaran, V, Boehmians of type S and their Fourier transforms, Ann. UMCS Math., 64, 27-43, (2010) · Zbl 1219.46037
[25] Karunakaran, V; Prasanna, DC, The Laplace transform on a Boehmian space, Ann. Pol. Math., 97, 151-157, (2010) · Zbl 1215.44001
[26] Nemzer, D, S-asymptotic properties of boehmians, Integr. Trasforms Spec. Funct., 21, 503-513, (2010) · Zbl 1208.46040
[27] Ganesan, C, Weighted ultra distributions and boehmians, Int. J. Math. Anal., 4, 703-712, (2010) · Zbl 1210.46030
[28] Karunakaran, V; Ganesan, C, Fourier transform on integrable boehmians, Integr. Transforms Spec. Funct., 20, 937-941, (2009) · Zbl 1191.42003
[29] Nemzer, D, A note on multipliers for integrable boehmians, Fract. Calc. Appl. Anal., 12, 87-96, (2009) · Zbl 1183.46042
[30] Roopkumar, R, An extension of distributional wavelet transform, Colloq. Math., 115, 195-206, (2009) · Zbl 1173.46021
[31] Nemzer, D, A note on the convergence of a series in the space of boehmians, Bull. Pure Appl. Math., 2, 63-69, (2008) · Zbl 1156.46305
[32] Nemzer, D, One-parameter groups of boehmians, Bull. Korean Math. Soc., 44, 419-428, (2007) · Zbl 1144.46038
[33] Loonker, D; Banerji, PK; Debnath, L, On the Hankel transform for boehmians, Integral Trasforms Spec. Funct., 21, 479-486, (2010) · Zbl 1207.44005
[34] Al-Omari, SKQ, A Mellin transform for a space of Lebesgue integrable boehmians, Int. J. Contemp. Math. Sci., 6, 1597-1606, (2011) · Zbl 1253.46047
[35] Al-Omari, SKQ; Al-Omari, JF, Hartley transform for \(L_{p}\) boehmians and spaces of ultradistributions, Int. Math. Forum, 7, 433-443, (2012) · Zbl 1261.46028
[36] Zemanian, A.H.: Generalized integral transformation, Interscience, 1968. Republished by Dover, New York (1987) · Zbl 1333.46038
[37] Mendez, J; Robayana, M, A pair of generalized Hankel-Clifford transformations and their applications, J. Math. Anal. Appl., 154, 543-557, (1991) · Zbl 0746.46031
[38] Malgonde, SP; Bandewar, SR, On the generalized Hankel-Clifford transformation of arbitrary order, Proc. Indian Acad. Sci. Math. Sci., 110, 293-304, (2000) · Zbl 0964.46024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.